Design of tactile sensing systems for dextrous manipulators

Preliminary work aimed at understanding the general issues and tradeoffs governing the design of extended tactile sensing systems is reviewed. General methods for estimating the bandwidths of line-addressed and matrix-addressed systems are presented. The proposed tactile sensing system incorporates four subsystems that permit the high-speed access of tactile data: (1) a transduction scheme; (2) a preprocessing scheme; (3) a multiplexing and transmission subsystem; and (4) tactile data selection techniques. Designs for implementation at each of these levels are presented. The designs emphasize practical necessities such as simplicity, reliability, and economy, along with plans to incorporate a tactile system into the Utah/MIT dextrous hand.<<ETX>>

[1]  R. Johansson,et al.  Sensitivity to edges of mechanoreceptive afferent units innervating the glabrous skin of the human hand , 1982, Brain Research.

[2]  Ronald S. Fearing,et al.  Basic solid mechanics for tactile sensing , 1984, ICRA.

[3]  Stephen C. Jacobsen,et al.  Low level control of the Utah/M.I.T. dextrous hand , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[4]  W. Daniel Hillis,et al.  A High-Resolution Imaging Touch Sensor , 1982 .

[5]  Barry E. Jones,et al.  Sense of Touch for Machines—An Overview , 1985 .

[6]  Stephen C. Jacobsen,et al.  Design of the Utah/M.I.T. Dextrous Hand , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Leon D. Harmon,et al.  Automated Tactile Sensing , 1982 .

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  John Kenneth Salisbury,et al.  Interpretation of contact geometries from force measurements , 1984, ICRA.

[10]  Jack Rebman,et al.  Design criteria and recognition schemes for an arrayed touch-sensor , 1984, ICRA.

[11]  John M. Hollerbach,et al.  Implementation of control methodologies on the computational architecture for the Utah/MIT hand , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[12]  James S. Albus,et al.  Brains, behavior, and robotics , 1981 .

[13]  G. Beni,et al.  A Torque-Sensitive Tactile Array for Robotics , 1983 .

[14]  D. De Rossi,et al.  Tactile sensors and the gripping challenge: Increasing the performance of sensors over a wide range of force is a first step toward robotry that can hold and manipulate objects as humans do , 1985, IEEE Spectrum.

[15]  Danilo Emilio De Rossi,et al.  Tactile sensors and the gripping challenge , 1985 .

[16]  M. Rueff,et al.  Sensors And Flexible Production , 1984 .

[17]  G. Beni,et al.  Dynamic Sensing for Robots: An Analysis and Implementation , 1983 .

[18]  John M. Hollerbach,et al.  An integrated tactile and thermal sensor , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[19]  R. Johansson,et al.  Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements , 1982, Brain Research.

[20]  Herbert Taub,et al.  Principles of communication systems , 1970 .

[21]  Wesley E. Snyder,et al.  Industrial Robots: Computer Interfacing and Control , 1985 .

[22]  Ian McCammon Design Of A Conformal Tactile Sensing Array , 1985, Other Conferences.