Nonsmooth optimal regulation and discontinuous stabilization

For affine control systems, we study the relationship between an optimal regulation problem on the infinite horizon and stabilizability. We are interested in the case the value function of the optimal regulation problem is not smooth and feedback laws involved in stabilizability may be discontinuous.

[1]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[2]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[3]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[4]  Roberto Conti,et al.  Linear Differential Equations and Control , 1976 .

[5]  D. Jacobson Extensions of Linear-Quadratic Control, Optimization and Matrix Theory , 1977 .

[6]  S. Glad On the gain margin of nonlinear and optimal regulators , 1984, 1982 21st IEEE Conference on Decision and Control.

[7]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[8]  Z. Artstein Stabilization with relaxed controls , 1983 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  John N. Tsitsiklis,et al.  Guaranteed robustness properties of multivariable, nonlinear, stochastic optimal regulators , 1983 .

[11]  H. Soner,et al.  On the Singularities of the Viscosity Solutions to Hamilton-Jacobi-Bellman Equations , 1985 .

[12]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[13]  Shankar Sastry,et al.  A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators , 1986, 1986 25th IEEE Conference on Decision and Control.

[14]  Halina Frankowska,et al.  Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation , 1987, 26th IEEE Conference on Decision and Control.

[15]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[16]  Piermarco Cannarsa,et al.  Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations , 1989 .

[17]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[18]  Stabilization Via Optimization , 1991 .

[19]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[20]  B. Paden,et al.  Lyapunov stability theory of nonsmooth systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[21]  D. Bernstein Nonquadratic cost and nonlinear feedback control , 1993 .

[22]  Danuta Nowakowska-Rozpłoch Set-Valued Analysis, Systems & Control Series, Vol. 2. By Jean-Paul Aubin and Helene Frankowska, Birkhauser, Boston, 1990 , 1994 .

[23]  P. Cannarsa,et al.  Convexity properties of the minimum time function , 1995 .

[24]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[25]  Henry Hermes,et al.  Resonance, stabilizing feedback controls, and regularity of viscosity solutions of Hamilton-Jacobi-Bellman equations , 1996, Math. Control. Signals Syst..

[26]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[27]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[28]  Eduardo D. Sontag,et al.  Mathematical Control Theory Second Edition , 1998 .

[29]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[30]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[31]  A. Bacciotti,et al.  Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions , 1999 .

[32]  F. Ancona,et al.  Patchy Vector Fields and Asymptotic Stabilization , 1999 .

[33]  P. Kokotovic,et al.  CLF based designs with robustness to dynamic input uncertainties , 1999 .

[34]  Ludovic Rifford,et al.  Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..

[35]  F. Da Lio On the Bellman Equation for Infinite Horizon Problems with Unbounded Cost Functional , 2000 .

[36]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[37]  A. Bacciotti,et al.  Optimal Regulation and Discontinuous Stabilization , 2001 .

[38]  Ludovic Rifford,et al.  On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients , 2001 .

[39]  F. Clarke,et al.  Feedback in state constrained optimal control , 2002 .