Automata, Borel functions and real numbers in Pisot base

This note is about functions f : A ! ! B ! whose graph is recognized by a Buchi finite automaton on the product alphabet A◊B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such fonction are continuous or not. In 1920 W. Sierpinski showed that a function f : R ! R is Baire class 1 if and only if both the overgraph and the undergraph of f are Fae. We show that such characterization is also true for functions on infinite words if we replace the real ordering by the lexicographical ordering on B ! . From this we deduce that it is decidable whether such fonction are of Baire class 1 or not. We extend this result to reals functions definable by automata in Pisot base.

[1]  G. A. Edgar Classics On Fractals , 2019 .

[2]  Lawrence H. Landweber,et al.  Decision problems forω-automata , 1969, Mathematical systems theory.

[3]  Christian Choffrut,et al.  Decision Issues on Functions Realized by Finite Automata , 1999, J. Autom. Lang. Comb..

[4]  A. Kechris Classical descriptive set theory , 1987 .

[5]  Christophe Prieur How to decide continuity of rational functions on infinite words , 2002, Theor. Comput. Sci..

[6]  Françoise Gire Two Decidability Problems for Infinite Words , 1986, Inf. Process. Lett..

[7]  Christophe Prieur,et al.  How to decide continuity of rational functions on infinite words , 2001, Theor. Comput. Sci..

[8]  Jacques Sakarovitch,et al.  Synchronized Rational Relations of Finite and Infinite Words , 1993, Theor. Comput. Sci..

[9]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[10]  J. Muller Arithmétique des ordinateurs , 1989 .

[11]  Berndt Farwer,et al.  ω-automata , 2002 .

[12]  Olivier Finkel Undecidability of Topological and Arithmetical Properties of Infinitary Rational Relations , 2003, RAIRO Theor. Informatics Appl..

[13]  Christiane Frougny On-the-Fly Algorithms and Sequential Machines , 2000, IEEE Trans. Computers.

[14]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[15]  Peter Kornerup Digit-Set Conversions: Generalizations and Application , 1994, IEEE Trans. Computers.

[16]  Christiane Frougny,et al.  On multiplicatively dependent linear numeration systems, and periodic points , 2002, RAIRO Theor. Informatics Appl..

[17]  Tomás Lang,et al.  On-the-Fly Conversion of Redundant into Conventional Representations , 1987, IEEE Transactions on Computers.

[18]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[19]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[20]  Boris Solomyak,et al.  Ergodic Theory of ℤ d Actions: On representation of integers in Linear Numeration Systems , 1996 .

[21]  Olivier Finkel On the Topological Complexity of Infinitary Rational Relations , 2003, RAIRO Theor. Informatics Appl..