SUBSAMPLING VARIANCE FOR INPUT UNCERTAINTY QUANTIFICATION

In stochastic simulation, input uncertainty refers to the output variability arising from the statistical noise in specifying the input models. This uncertainty can be measured by a variance contribution in the output, which is estimated commonly via the bootstrap. However, due to the convolution of the simulation noise and the input noise, the computation effort required in the existing bootstrap schemes are typically substantial. This paper investigates a subsampling framework as a computation saver. We demonstrate the strengths of our subsampled bootstrap in terms of theoretical computation requirements, and substantiate them with numerical illustrations.

[1]  Wei Xie,et al.  Quantifying Input Uncertainty via Simulation Confidence Intervals , 2014, INFORMS J. Comput..

[2]  Shane G. Henderson,et al.  Input modeling: input model uncertainty: why do we care and what should we do about it? , 2003, WSC '03.

[3]  R. Cheng,et al.  Sensitivity of computer simulation experiments to errors in input data , 1997 .

[4]  Lee W. Schruben,et al.  Resampling methods for input modeling , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[5]  Lee W. Schruben,et al.  Uniform and bootstrap resampling of empirical distributions , 1993, WSC '93.

[6]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[7]  Daniel W. Apley,et al.  Efficient Nested Simulation for Estimating the Variance of a Conditional Expectation , 2011, Oper. Res..

[8]  R. R. Barton,et al.  Tutorial: Input uncertainty in outout analysis , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[9]  Russell C. H. Cheng,et al.  Calculation of confidence intervals for simulation output , 2004, TOMC.

[10]  S. E. Chick,et al.  THE EMPIRICAL LIKELIHOOD APPROACH TO SIMULATION INPUT UNCERTAINTY , 2016 .

[11]  R. Cheng,et al.  Two-point methods for assessing variability in simulation output , 1998 .

[12]  Henry Lam,et al.  The empirical likelihood approach to simulation input uncertainty , 2016, 2016 Winter Simulation Conference (WSC).

[13]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[14]  Henry Lam,et al.  Optimization-based Quantification of Simulation Input Uncertainty via Empirical Likelihood , 2017, 1707.05917.

[15]  Barry L. Nelson,et al.  Advanced tutorial: Input uncertainty quantification , 2014, Proceedings of the Winter Simulation Conference 2014.

[16]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[17]  Stephen E. Chick,et al.  Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty , 2001, Oper. Res..

[18]  Eunhye Song,et al.  Input-output uncertainty comparisons for optimization via simulation , 2016, 2016 Winter Simulation Conference (WSC).

[19]  Wei Xie,et al.  A Bayesian Nonparametric Hierarchical Framework for Uncertainty Quantification in Simulation , 2017 .

[20]  Barry L. Nelson,et al.  Single-experiment input uncertainty , 2015, J. Simulation.

[21]  Jason Swanson Conditional Expectation , 2014 .