Quantum simulation of clustered photosynthetic light harvesting in a superconducting quantum circuit

We propose a scheme to simulate the exciton energy transfer (EET) of photosynthetic complexes in a quantum superconducting circuit system. Our system is composed of two pairs of superconducting charge qubits coupled to two separated high-Q superconducting transmission line resonators (TLRs) connected by a capacitance. When the frequencies of the qubits are largely detuned with those of the TLRs, we simulate the process of the EET from the first qubit to the fourth qubit. By tuning the couplings between the qubits and the TLRs, and the coupling between the two TLRs, we can modify the effective coupling strengths between the qubits and thus demonstrate the geometric effects on the EET. It is shown that a moderate clustered geometry supports optimal EET by using exciton delocalization and energy matching condition. And the population loss during the EET has been trapped in the two TLRs.

[1]  Q. Ai,et al.  Exact and efficient quantum simulation of open quantum dynamics for various of Hamiltonians and spectral densities , 2020, 2007.02303.

[2]  D. Coker,et al.  Quantum biology revisited , 2020, Science Advances.

[3]  Q. Ai,et al.  Coherent and incoherent theories for photosynthetic energy transfer. , 2019, Science bulletin.

[4]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Franco Nori,et al.  Efficient quantum simulation of photosynthetic light harvesting , 2018, npj Quantum Information.

[7]  A. Chin,et al.  Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex , 2018, Physical Review A.

[8]  F. Nori,et al.  Quantum simulation of photosynthetic energy transfer , 2018, 1801.09475.

[9]  Alex W Chin,et al.  Reply to Reviewers Comments , 2018 .

[10]  Q. Ai,et al.  Artificial light harvesting by dimerized Möbius ring. , 2017, Physical review. E.

[11]  P. Schindler,et al.  Engineering vibrationally-assisted energy transfer in a trapped-ion quantum simulator , 2017, 1709.04064.

[12]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[13]  A. Datta,et al.  Structure-Dynamics Relation in Physically-Plausible Multi-Chromophore Systems. , 2017, The journal of physical chemistry letters.

[14]  Bei Zeng,et al.  Quantum State Tomography via Reduced Density Matrices. , 2016, Physical review letters.

[15]  Q. Ai,et al.  Proposal for probing energy transfer pathway by single-molecule pump-dump experiment , 2015, Scientific Reports.

[16]  F. Nori,et al.  Entangling superconducting qubits in a multi-cavity system , 2015, 1506.06108.

[17]  Wei Chen,et al.  A coherent modified Redfield theory for excitation energy transfer in molecular aggregates , 2015 .

[18]  Yuan‐Chung Cheng,et al.  On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics. , 2015, The Journal of chemical physics.

[19]  Franco Nori,et al.  Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  K. B. Whaley,et al.  Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities. , 2014, Physical review letters.

[21]  R. Mulet,et al.  Centrosymmetry enhances quantum transport in disordered molecular networks , 2014 .

[22]  Yuan-Chung Cheng,et al.  An efficient quantum jump method for coherent energy transfer dynamics in photosynthetic systems under the influence of laser fields , 2014, 1404.2052.

[23]  Fu-Guo Deng,et al.  Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics , 2014, 1403.0031.

[24]  J. Gambetta,et al.  Purcell effect with microwave drive: Suppression of qubit relaxation rate , 2014, 1401.5545.

[25]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[26]  T. Mančal,et al.  Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy , 2013 .

[27]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[28]  T. Mančal Excitation energy transfer in a classical analogue of photosynthetic antennae. , 2013, The journal of physical chemistry. B.

[29]  Leonas Valkunas,et al.  Molecular Excitation Dynamics and Relaxation: VALKUNAS:MOLECULAR EXCITATION DYNAMICS AND RELAXATION O-BK , 2013 .

[30]  Yuan-Chung Cheng,et al.  Clustered Geometries Exploiting Quantum Coherence Effects for Efficient Energy Transfer in Light Harvesting , 2013, 1307.5590.

[31]  F. Nori,et al.  Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities , 2013, 1307.2503.

[32]  N. V. van Hulst,et al.  Quantum Coherent Energy Transfer over Varying Pathways in Single Light-Harvesting Complexes , 2013, Science.

[33]  Jianshu Cao,et al.  Optimal fold symmetry of LH2 rings on a photosynthetic membrane , 2013, Proceedings of the National Academy of Sciences.

[34]  Franco Nori,et al.  Rerouting excitation transfers in the Fenna-Matthews-Olson complex. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[36]  Diego Prada-Gracia,et al.  Structure–dynamics relationship in coherent transport through disordered systems , 2013, Nature Communications.

[37]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[38]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[39]  S. Huelga,et al.  Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism. , 2012, The journal of physical chemistry letters.

[40]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[41]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[42]  Chui-Ping Yang,et al.  Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit , 2011, 1106.3237.

[43]  C. P. Sun,et al.  Quantum anti-Zeno effect without wave function reduction , 2010, Scientific Reports.

[44]  G. Scholes,et al.  Coherent Energy Transfer under Incoherent Light Conditions. , 2012, The journal of physical chemistry letters.

[45]  Qi-Ping Su,et al.  Proposal for realizing a multiqubit tunable phase gate of one qubit simultaneously controlling n target qubits using cavity QED , 2012, 1208.2948.

[46]  Paul Brumer,et al.  Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes. , 2012, Physical chemistry chemical physics : PCCP.

[47]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[48]  Jeremy M Moix,et al.  Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems , 2012, 1202.4705.

[49]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[50]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[51]  Franco Nori,et al.  Nonperturbative theory of weak pre-and post-selected measurements , 2011, 1109.6315.

[52]  Alán Aspuru-Guzik,et al.  Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes , 2011, New Journal of Physics.

[53]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[54]  Andreas Buchleitner,et al.  Optimal networks for excitonic energy transport , 2011 .

[55]  P. Curmi,et al.  Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. , 2011, Biophysical journal.

[56]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[57]  F. Nori,et al.  Quantum effects in energy and charge transfer in an artificial photosynthetic complex. , 2011, The Journal of chemical physics.

[58]  Klaus Schulten,et al.  Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  V. May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: MAY:CHARGE TRANSFER 3ED O-BK , 2011 .

[60]  F. Wellstood,et al.  Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms. , 2011, Physical review letters.

[61]  F. Nori,et al.  Artificial photosynthetic reaction centers coupled to light-harvesting antennas. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Andreas Buchleitner,et al.  Efficient and coherent excitation transfer across disordered molecular networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Hang Zheng,et al.  Quantum anti-Zeno effect without rotating wave approximation , 2010, 1003.1899.

[64]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[65]  Shangfeng Yang,et al.  Dimerization-assisted energy transport in light-harvesting complexes. , 2010, The Journal of chemical physics.

[66]  M S Allman,et al.  rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. , 2010, Physical review letters.

[67]  F. Nori,et al.  Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states , 2009, 0912.4888.

[68]  Animesh Datta,et al.  Noise-assisted energy transfer in quantum networks and light-harvesting complexes , 2009, 0910.4153.

[69]  Cristiano Ciuti,et al.  Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime. , 2009, Physical review letters.

[70]  Franco Nori,et al.  Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity , 2009, 1101.0205.

[71]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[72]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[73]  Graham R Fleming,et al.  Dynamics of light harvesting in photosynthesis. , 2009, Annual review of physical chemistry.

[74]  Nonadiabatic fluctuation in the measured geometric phase , 2009, 0903.5381.

[75]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[76]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[77]  O Buisson,et al.  Strong tunable coupling between a superconducting charge and phase qubit. , 2008, Physical review letters.

[78]  C. P. Sun,et al.  Creation of entanglement between two electron spins induced by many spin ensemble excitations , 2007, cond-mat/0703342.

[79]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[80]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[81]  S. Girvin,et al.  Quantum information processing with circuit quantum electrodynamics , 2006, cond-mat/0612038.

[82]  R. Silbey,et al.  Coherence in the B800 ring of purple bacteria LH2. , 2006, Physical review letters.

[83]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[84]  S. Girvin,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[85]  R. L. Badzey,et al.  Evidence for quantized displacement in macroscopic nanomechanical oscillators. , 2005, Physical review letters.

[86]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[87]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[88]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[89]  R. Knox Electronic excitation transfer in the photosynthetic unit: Reflections on work of William Arnold , 1996, Photosynthesis Research.

[90]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[91]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[92]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[93]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[94]  S. Savikhin,et al.  Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels , 1997 .

[95]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[96]  J. Leegwater,et al.  Coherent Versus Incoherent Energy Transfer and Trapping in Photosynthetic Antenna Complexes , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[97]  G. Fleming,et al.  Primary steps of photosynthesis , 1994 .

[98]  P. Knight Fundamental Systems in Quantum Optics , 1993 .