Modeling of Rate-Dependent Hysteresis for Piezoelectric Actuator with MPI Model-Based Hammerstein System

In this paper, a Hammerstein system is proposed to describe the rate-dependent hysteresis nonlinearity of a piezoelectric actuator. In this system, a MPI model represents the nonlinear static block and a second order linear system represents the linear dynamic block. The parameters identification method for the system is given. Comparison between the outputs of the system and experiment shows that the system can describe the rate-dependent hysteresis nonlinearity of the piezoelectric actuator in a wide range.

[1]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[2]  Ranjan Ganguli,et al.  Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control , 2007 .

[3]  Urban Simu,et al.  Evaluation of a monolithic piezoelectric drive unit for a miniature robot , 2002 .

[4]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[5]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[6]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[7]  Yonghong Tan,et al.  Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators , 2010 .

[8]  C.-Y. Su,et al.  Observer based control of piezoelectric actuators with classical Duhem modeled hysteresis , 2009, 2009 American Control Conference.

[9]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[10]  Michael Goldfarb,et al.  Behavioral implications of piezoelectric stack actuators for control of micromanipulation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  S. Li-ning,et al.  Hysteresis and creep compensation for piezoelectric actuator in open-loop operation , 2005 .

[12]  Ryutaro Maeda,et al.  Development of 1D Optical Micro Scanner Driven by Piezoelectric Actuators , 2005 .

[13]  Chih-Jer Lin,et al.  PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2006 .

[14]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[15]  Yonghong Tan,et al.  Modeling of hysteresis in piezoelectric actuators using neural networks , 2009 .

[16]  Chen Kai A Novel Piezo-Driven Micro-Jet Injection System for Transdermal Drug Delivery , 2009 .

[17]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[18]  Oriol Gomis-Bellmunt,et al.  Control of a piezoelectric actuator considering hysteresis , 2009 .

[19]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[20]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .