Enhancing sustainable production by the combined use of material flow analysis and mathematical programming

Abstract Material and energy flow analysis (MEFA) is used by many companies for sustainability assessments of their production systems. MEFA generally leads to large and complex system models for which optimal operating conditions are hard to find manually. This article therefore presents an extension of MEFA towards mathematical programming that provides powerful methods for system optimization. A theoretic concept for this methodological integration is developed, illustrated by means of a simplified example and finally applied to a case study of an industrial waste treatment scenario. Technical feasibility is thus demonstrated. Moreover, the algebraic transformation of material flow models into mathematical programs reveals, on a conceptual level, the basic principles of an optimization-oriented MEFA.

[1]  Gerald Rebitzer,et al.  IMPACT 2002+: A new life cycle impact assessment methodology , 2003 .

[2]  Ignacio E. Grossmann,et al.  Enterprise‐wide optimization: A new frontier in process systems engineering , 2005 .

[3]  T. Graedel,et al.  Industrial ecology: goals and definitions , 2002 .

[4]  Arnold Tukker,et al.  Product Innovation and Eco-efficiency , 1998 .

[5]  Helmut Rechberger,et al.  Practical handbook of material flow analysis , 2003 .

[6]  Mario Schmidt,et al.  Material Flow Networks as a Means of Optimizing Production Systems , 2010 .

[7]  Mario Schmidt,et al.  Ökobilanzierung mit Computerunterstützung , 1997 .

[8]  R. Heijungs Towards eco-efficiency with LCA’s prevention principle: an epistemological foundation of LCA using axioms , 1998 .

[9]  H. Dyckhoff Betriebliche Produktion : theoretische Grundlagen einer umweltorientierten Produktionswirtschaft , 1992 .

[10]  Braden Allenby,et al.  Industrial Ecology and Sustainable Engineering , 2009 .

[11]  Andreas Häuslein,et al.  Ökobilanzierung mit Computerunterstützung : Produktbilanzen und betriebliche Bilanzen mit dem Programm Umberto , 1997 .

[12]  Tobias Viere,et al.  Verbund‐Simulation – Strategic Planning and Optimization of Integrated Production Networks , 2010 .

[13]  Michael R. Bussieck,et al.  MINLP Solver Software , 2011 .

[14]  Andreas Bode,et al.  Looking at the Cost: Using Flow Analysis to Assess and Improve Chemical Production Processes , 2012 .

[15]  Josef Kallrath,et al.  Combined strategic and operational planning – an MILP success story in chemical industry , 2002, OR Spectr..

[16]  Guido Sonnemann Start of the next phase: Task forces and potential future crosscutting activities , 2003 .

[17]  N. Thißen Mass and Energy Flow Analysis Supports Process Improvement , 2010 .

[18]  O. Rentz,et al.  Multi‐criteria Analysis for Technique Assessment:Case Study from Industrial Coating , 2005 .

[19]  Christopher Vyn Jones,et al.  Visualization and Optimization , 1997 .

[20]  H. Dyckhoff Berücksichtigung des Umweltschutzes in der betriebswirtschaftlichen Produktionstheorie , 1993 .

[21]  Jacek Gondzio,et al.  Optimization modeling languages , 2002 .