Information Estimation Using Non-Parametric Copulas
暂无分享,去创建一个
Stefano Panzeri | Houman Safaai | Arno Onken | Christopher D. Harvey | C. Harvey | S. Panzeri | A. Onken | Houman Safaai
[1] J. Victor. Binless strategies for estimation of information from neural data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] Jonathan W. Pillow,et al. Bayesian and Quasi-Bayesian Estimators for Mutual Information from Discrete Data , 2013, Entropy.
[3] Thomas Nagler,et al. A generic approach to nonparametric function estimation with mixed data , 2017, Statistics & Probability Letters.
[4] D. W. Scott,et al. Biased and Unbiased Cross-Validation in Density Estimation , 1987 .
[5] Thomas Nagler,et al. kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities , 2016, 1603.04229.
[6] William Bialek,et al. Entropy and information in neural spike trains: progress on the sampling problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[8] R. Quiroga,et al. Extracting information from neuronal populations : information theory and decoding approaches , 2022 .
[9] Thomas G. Dietterich,et al. In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.
[10] Eduardo G. Altmann,et al. On the similarity of symbol frequency distributions with heavy tails , 2015, ArXiv.
[11] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[12] R. Kass,et al. Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.
[13] Rick L. Jenison,et al. The Shape of Neural Dependence , 2004, Neural Computation.
[14] D. Ruppert,et al. Flexible Copula Density Estimation with Penalized Hierarchical B‐splines , 2013 .
[15] Stefano Panzeri,et al. Distinct timescales of population coding across cortex , 2017, Nature.
[16] A. Kraskov,et al. Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Noël Veraverbeke,et al. A note on the asymptotic behavior of the Bernstein estimator of the copula density , 2014, J. Multivar. Anal..
[18] Gery Geenens,et al. Probit Transformation for Kernel Density Estimation on the Unit Interval , 2013, 1303.4121.
[19] Jonathan W. Pillow,et al. Bayesian entropy estimation for countable discrete distributions , 2013, J. Mach. Learn. Res..
[20] BMC Bioinformatics , 2005 .
[21] Marcelo A. Montemurro,et al. Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.
[22] M. Diamond,et al. Complementary Contributions of Spike Timing and Spike Rate to Perceptual Decisions in Rat S1 and S2 Cortex , 2015, Current Biology.
[23] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[24] P. Rapp,et al. Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[26] Haslifah M. Hasim,et al. Inference of financial networks using the normalised mutual information rate , 2017, PloS one.
[27] Claudia Czado,et al. Nonparametric estimation of simplified vine copula models: comparison of methods , 2017, 1701.00845.
[28] R. Nelsen. An Introduction to Copulas , 1998 .
[29] Milan Palus,et al. Direction of coupling from phases of interacting oscillators: an information-theoretic approach. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[31] Jeffrey S. Racine,et al. Mixed data kernel copulas , 2015 .
[32] Doron Cohen. Lecture Notes in Statistical Mechanics and Mesoscopics , 2011 .
[33] Rava Azeredo da Silveira,et al. Structures of Neural Correlation and How They Favor Coding , 2016, Neuron.
[34] PollardStatistics DepartmentYale UniversityBox,et al. Scandinavian Journal of StatisticsUniform ratio limit theorems for empirical processesbyDavid , 2007 .
[35] H. Joe. Dependence Modeling with Copulas , 2014 .
[36] Renato Vicente,et al. An information-theoretic approach to statistical dependence: Copula information , 2009, ArXiv.
[37] Claudia Czado,et al. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..
[38] Viola Priesemann,et al. Breakdown of local information processing may underlie isoflurane anesthesia effects , 2017, PLoS Comput. Biol..
[39] M. C. Jones,et al. Locally parametric nonparametric density estimation , 1996 .
[40] Liam Paninski,et al. Estimation of Entropy and Mutual Information , 2003, Neural Computation.
[41] Guillaume A. Rousselet,et al. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula , 2016, bioRxiv.
[42] David L. Sheinberg,et al. Spike Count Reliability and the Poisson Hypothesis , 2006, The Journal of Neuroscience.
[43] Thomas L. Griffiths,et al. Advances in Neural Information Processing Systems 21 , 1993, NIPS 2009.
[44] C. Loader. Local Likelihood Density Estimation , 1996 .
[45] Arthur Charpentier,et al. Probit Transformation for Nonparametric Kernel Estimation of the Copula Density , 2014, 1404.4414.
[46] H. Joe,et al. The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .
[47] T. Durrani,et al. Estimation of mutual information using copula density function , 2011 .
[48] Ben Calderhead,et al. Advances in Neural Information Processing Systems 29 , 2016 .
[49] O. William. Journal Of The American Statistical Association V-28 , 1932 .
[50] L. Goddard. Information Theory , 1962, Nature.
[51] Stefano Panzeri,et al. Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.
[52] Christian Genest,et al. Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..
[53] S. Chen,et al. Nonparametric estimation of copula functions for dependence modelling , 2007 .