Information Estimation Using Non-Parametric Copulas

Estimation of mutual information between random variables has become crucial in a range of fields, from physics to neuroscience to finance. Estimating information accurately over a wide range of conditions relies on the development of flexible methods to describe statistical dependencies among variables, without imposing potentially invalid assumptions on the data. Such methods are needed in cases that lack prior knowledge of their statistical properties and that have limited sample numbers. Here we propose a powerful and generally applicable information estimator based on non-parametric copulas. This estimator, called the non-parametric copula-based estimator (NPC), is tailored to take into account detailed stochastic relationships in the data independently of the data's marginal distributions. The NPC estimator can be used both for continuous and discrete numerical variables and thus provides a single framework for the mutual information estimation of both continuous and discrete data. By extensive validation on artificial samples drawn from various statistical distributions, we found that the NPC estimator compares well against commonly used alternatives. Unlike methods not based on copulas, it allows an estimation of information that is robust to changes of the details of the marginal distributions. Unlike parametric copula methods, it remains accurate regardless of the precise form of the interactions between the variables. In addition, the NPC estimator had accurate information estimates even at low sample numbers, in comparison to alternative estimators. The NPC estimator therefore provides a good balance between general applicability to arbitrarily shaped statistical dependencies in the data and shows accurate and robust performance when working with small sample sizes. We anticipate that the non-parametric copula information estimator will be a powerful tool in estimating mutual information between a broad range of data.

[1]  J. Victor Binless strategies for estimation of information from neural data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Jonathan W. Pillow,et al.  Bayesian and Quasi-Bayesian Estimators for Mutual Information from Discrete Data , 2013, Entropy.

[3]  Thomas Nagler,et al.  A generic approach to nonparametric function estimation with mixed data , 2017, Statistics & Probability Letters.

[4]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[5]  Thomas Nagler,et al.  kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities , 2016, 1603.04229.

[6]  William Bialek,et al.  Entropy and information in neural spike trains: progress on the sampling problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[8]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[9]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[10]  Eduardo G. Altmann,et al.  On the similarity of symbol frequency distributions with heavy tails , 2015, ArXiv.

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[12]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[13]  Rick L. Jenison,et al.  The Shape of Neural Dependence , 2004, Neural Computation.

[14]  D. Ruppert,et al.  Flexible Copula Density Estimation with Penalized Hierarchical B‐splines , 2013 .

[15]  Stefano Panzeri,et al.  Distinct timescales of population coding across cortex , 2017, Nature.

[16]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Noël Veraverbeke,et al.  A note on the asymptotic behavior of the Bernstein estimator of the copula density , 2014, J. Multivar. Anal..

[18]  Gery Geenens,et al.  Probit Transformation for Kernel Density Estimation on the Unit Interval , 2013, 1303.4121.

[19]  Jonathan W. Pillow,et al.  Bayesian entropy estimation for countable discrete distributions , 2013, J. Mach. Learn. Res..

[20]  BMC Bioinformatics , 2005 .

[21]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[22]  M. Diamond,et al.  Complementary Contributions of Spike Timing and Spike Rate to Perceptual Decisions in Rat S1 and S2 Cortex , 2015, Current Biology.

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  P. Rapp,et al.  Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[26]  Haslifah M. Hasim,et al.  Inference of financial networks using the normalised mutual information rate , 2017, PloS one.

[27]  Claudia Czado,et al.  Nonparametric estimation of simplified vine copula models: comparison of methods , 2017, 1701.00845.

[28]  R. Nelsen An Introduction to Copulas , 1998 .

[29]  Milan Palus,et al.  Direction of coupling from phases of interacting oscillators: an information-theoretic approach. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[31]  Jeffrey S. Racine,et al.  Mixed data kernel copulas , 2015 .

[32]  Doron Cohen Lecture Notes in Statistical Mechanics and Mesoscopics , 2011 .

[33]  Rava Azeredo da Silveira,et al.  Structures of Neural Correlation and How They Favor Coding , 2016, Neuron.

[34]  PollardStatistics DepartmentYale UniversityBox,et al.  Scandinavian Journal of StatisticsUniform ratio limit theorems for empirical processesbyDavid , 2007 .

[35]  H. Joe Dependence Modeling with Copulas , 2014 .

[36]  Renato Vicente,et al.  An information-theoretic approach to statistical dependence: Copula information , 2009, ArXiv.

[37]  Claudia Czado,et al.  Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..

[38]  Viola Priesemann,et al.  Breakdown of local information processing may underlie isoflurane anesthesia effects , 2017, PLoS Comput. Biol..

[39]  M. C. Jones,et al.  Locally parametric nonparametric density estimation , 1996 .

[40]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[41]  Guillaume A. Rousselet,et al.  A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula , 2016, bioRxiv.

[42]  David L. Sheinberg,et al.  Spike Count Reliability and the Poisson Hypothesis , 2006, The Journal of Neuroscience.

[43]  Thomas L. Griffiths,et al.  Advances in Neural Information Processing Systems 21 , 1993, NIPS 2009.

[44]  C. Loader Local Likelihood Density Estimation , 1996 .

[45]  Arthur Charpentier,et al.  Probit Transformation for Nonparametric Kernel Estimation of the Copula Density , 2014, 1404.4414.

[46]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[47]  T. Durrani,et al.  Estimation of mutual information using copula density function , 2011 .

[48]  Ben Calderhead,et al.  Advances in Neural Information Processing Systems 29 , 2016 .

[49]  O. William Journal Of The American Statistical Association V-28 , 1932 .

[50]  L. Goddard Information Theory , 1962, Nature.

[51]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[52]  Christian Genest,et al.  Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..

[53]  S. Chen,et al.  Nonparametric estimation of copula functions for dependence modelling , 2007 .