Monolithic Tin-doped Silica Glass

Monolithic and transparent Sn-doped SiO2 glasses, where Sn atoms replaced Si centers in the SiO2 network, were prepared by a new sol-gel route by using tetraethoxysilane (TEOS) and dibutyltindiacetate (DBTDA) as precursors. The maximum amount of Sn doping was 1.40 wt % SnO2/(SnO2+SiO2) (corresponding to 0.55 mol %). At higher tin content (≥ 1.60 wt %, corresponding to 0.64 mol %) crystalline nanosized particles of SnO2 (6–10 nm) segregated in silica matrix.

[1]  G. Spinolo,et al.  Identification of Sn variants of the E' center in Sn-doped SiO 2 , 1998 .

[2]  Victor Mizrahi,et al.  248 nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity , 1993 .

[3]  Simon Poole,et al.  Photolytic Index Changes in Optical Fibers , 1993 .

[4]  L. Reekie,et al.  Enhanced photosensitivity in tin-codoped germanosilicate optical fibers , 1995, IEEE Photonics Technology Letters.

[5]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .

[6]  F. L. Galeener Planar rings in glasses , 1982 .

[7]  G. Spinolo,et al.  Substitutional tin-doped silica glasses : an infrared study of the sol-gel transition , 2001 .

[8]  High reliability tin-codoped germanosilicate fibre Bragg gratings fabricated by direct writing method , 1998 .

[9]  Ching,et al.  Electronic- and vibrational-structure calculations in models of the compressed SiO2 glass system. , 1989, Physical review. B, Condensed matter.

[10]  C. Askins,et al.  Photoinduced grating and intensity dependence of defect generation in Ge‐doped silica optical fiber , 1992 .

[11]  F. L. Galeener,et al.  Band limits and the vibrational spectra of tetrahedral glasses , 1979 .

[12]  L. Abello,et al.  Structural Characterization of Nanocrystalline SnO2by X-Ray and Raman Spectroscopy , 1998 .

[13]  C. J. Evans,et al.  Organotin compounds in modern technology , 1985 .

[14]  Ram S. Katiyar,et al.  Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2 , 1971 .

[15]  G. Spinolo,et al.  Tin doped silica by sol–gel method: doping effects on the SiO2 Raman spectrum , 1998 .

[16]  B. Poumellec,et al.  The Photorefractive Bragg Gratings in the Fibers for Telecommunications , 1996 .

[17]  Norberto Chiodini,et al.  Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber preforms , 2001 .

[18]  Norberto Chiodini,et al.  Mechanisms responsible for the ultraviolet photosensitivity of SnO 2 -doped silica , 2001 .

[19]  Norberto Chiodini,et al.  Sol-gel synthesis of monolithic tin-doped silica glass , 1999 .

[20]  A. E. Geissberger,et al.  Raman studies of vitreous Si O 2 versus fictive temperature , 1983 .

[21]  John Robertson,et al.  Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2 , 1979 .

[22]  Linards Skuja,et al.  Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study , 1992 .

[23]  Gilberto Brambilla,et al.  Photorefractive index gratings in SnO2:SiO2 optical fibers , 2000 .

[24]  E. Friebele,et al.  Oxygen-associated trapped-hole centers in high-purity fused silicas , 1979 .

[25]  D. Griscom Characterization of three E'-center variants in X- and γ-irradiated high purity a-SiO2 , 1984 .

[26]  Norberto Chiodini,et al.  Thermally induced segregation of SnO2 nanoclusters in Sn-doped silica glasses from oversaturated Sn-doped silica xerogels , 2001 .