Unified analysis of discontinuous Galerkin approximations of flows in fractured porous media on polygonal and polyhedral grids

We propose a unified formulation based on discontinuous Galerkin methods on polygonal/polyhedral grids for the simulation of flows in fractured porous media. We adopt a model for single-phase flows where the fracture is modeled as a (d-1)-dimensional interface in a d-dimensional bulk domain, and model the flow in the porous medium and in the fracture by means of the Darcy’s law. The two problems are then coupled through physically consistent conditions. We focus on the numerical approximation of the coupled bulk-fracture problem and present and analyze, in an unified setting, all the possible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed formulations for the bulk and fracture problems, respectively. For all the possible combinations, we prove their well-posedness and derive a priori hp-version error estimates in a suitable (mesh-dependent) energy norm. Finally, preliminary numerical experiments assess the theoretical error estimates and accuracy of the proposed formulations.

[1]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[2]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[3]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[4]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[5]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[6]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[7]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[8]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[9]  Thomas J. R. Hughes,et al.  Mixed Discontinuous Galerkin Methods for Darcy Flow , 2005, J. Sci. Comput..

[10]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[11]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[12]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[13]  Alessandro Colombo,et al.  Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations , 2012 .

[14]  Philippe Angot,et al.  ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA , 2009 .

[15]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[16]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[17]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[18]  Paul Houston,et al.  Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, Domain Decomposition Methods in Science and Engineering XX.

[19]  Daniele Antonio Di Pietro,et al.  A Review of Hybrid High-Order Methods: Formulations, Computational Aspects, Comparison with Other Methods , 2016 .

[20]  Paul Houston,et al.  A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods , 2011, J. Sci. Comput..

[21]  W. Hackbusch,et al.  Composite finite elements for problems containing small geometric details , 1997 .

[22]  Paola F. Antonietti,et al.  Discontinuous Galerkin Approximation of Flows in Fractured Porous Media on Polytopic Grids , 2019, SIAM J. Sci. Comput..

[23]  Marco Verani,et al.  Polytopic Discontinuous Galerkin methods for the numerical modelling of flow in porous media with networks of intersecting fractures , 2020, Comput. Math. Appl..

[24]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[25]  Jérôme Jaffré,et al.  Modeling fractures as interfaces for flow and transport in porous media , 2001 .

[26]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[27]  Jérôme Jaffré,et al.  Domain Decomposition for Some Transmission Problems in Flow in Porous Media , 2000 .

[28]  Anna Scotti,et al.  MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA , 2016 .

[29]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[30]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[31]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[32]  Paul Houston,et al.  hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .

[33]  Alessio Fumagalli,et al.  A numerical method for two-phase flow in fractured porous media with non-matching grids , 2013 .

[34]  W. Hackbusch,et al.  Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .

[35]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[36]  Peter Hansbo,et al.  Cut finite elements for convection in fractured domains , 2018, Computers & Fluids.

[37]  Jean E. Roberts,et al.  Modeling fractures as interfaces: a model for Forchheimer fractures , 2008 .

[38]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[39]  Endre Süli,et al.  An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids , 2019, Math. Comput..

[40]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[41]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .

[42]  Stefano Berrone,et al.  A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .

[43]  Paola F. Antonietti,et al.  High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[44]  Alessandro Colombo,et al.  Agglomeration-based physical frame dG discretizations: An attempt to be mesh free , 2014 .

[45]  Robert Eymard,et al.  Gradient schemes: Generic tools for the numerical analysis of diffusion equations , 2015 .

[46]  Anna Scotti,et al.  Analysis of a mimetic finite difference approximation of flows in fractured porous media , 2018 .

[47]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[48]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[49]  Stefano Giani,et al.  Domain Decomposition Preconditioners for Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, Journal of Scientific Computing.

[50]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[51]  Roland Masson,et al.  Gradient discretization of hybrid dimensional Darcy flows in fractured porous media , 2015, Numerische Mathematik.

[52]  Luca Formaggia,et al.  A Hybrid High-Order Method for Darcy Flows in Fractured Porous Media , 2017, SIAM J. Sci. Comput..

[53]  Anna Scotti,et al.  Preconditioning Techniques for the Numerical Solution of Flow in Fractured Porous Media , 2020, Journal of Scientific Computing.

[54]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[55]  Thomas J. R. Hughes,et al.  A stabilized mixed finite element method for Darcy flow , 2002 .

[56]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[57]  Paola F. Antonietti,et al.  V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes , 2017, Journal of Scientific Computing.

[58]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[59]  C. D'Angelo,et al.  A mixed finite element method for Darcy flow in fractured porous media with non-matching grids , 2012 .

[60]  Alessio Fumagalli,et al.  A Review of the XFEM-Based Approximation of Flow in Fractured Porous Media , 2016 .

[61]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[62]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[63]  Jérôme Jaffré,et al.  A discrete fracture model for two-phase flow with matrix-fracture interaction , 2011, ICCS.

[64]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[65]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[66]  Paola F. Antonietti,et al.  Bubble stabilization of Discontinuous Galerkin methods , 2009 .

[67]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[68]  Emmanuil H. Georgoulis,et al.  hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes , 2016, SIAM J. Sci. Comput..

[69]  Paola F. Antonietti,et al.  Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[70]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[71]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[72]  Xiaozhe Hu,et al.  hp–Version discontinuous Galerkin methods on polygonal and polyhedral meshes , 2013 .

[73]  Paola F. Antonietti,et al.  A high-order discontinuous Galerkin approach to the elasto-acoustic problem , 2018, Computer Methods in Applied Mechanics and Engineering.

[74]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..