Learning Discriminative Classifier Parameter for Visual Object Tracking by Detection

In this paper, we propose an algorithm to learn the discriminative parameter vector in successive frames of a video. The learned parameter vector is used for visual object tracking. The learning method selects some positive and negative examples from example sets. Using iterative steps, one set of positive and negative example is selected in a single iteration. The weight update strategy is then used to estimate the proportionate weight of selected example set. The examples are selected based on the criterion that when the parameter vector is updated using these examples, the classification score between parameter vector and some examples will be higher. The proportionate weights are estimated to each selected example pair based on exploring different weights; using assumption that when the parameter vector is updated, it results in higher classification score between some positive examples and the updated parameter vector. The update strategy further estimates the scalar multiplier value of selected example pairs, except the first pair, considering the target appearance change and the target drift. The tracking results of the proposed discriminative parameter learning method is comparable to the state-of-the-art video trackers.

[1]  Yulei Wang,et al.  Visual tracking and learning using speeded up robust features , 2012, Pattern Recognit. Lett..

[2]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[3]  Philip H. S. Torr,et al.  Struck: Structured output tracking with kernels , 2011, ICCV.

[4]  Shengping Zhang,et al.  Robust visual tracking based on online learning sparse representation , 2013, Neurocomputing.

[5]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[6]  Ming Tang,et al.  Robust tracking via weakly supervised ranking SVM , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Yuan Xie,et al.  Discriminative Object Tracking via Sparse Representation and Online Dictionary Learning , 2014, IEEE Transactions on Cybernetics.

[11]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[13]  De Xu,et al.  Online State-Based Structured SVM Combined With Incremental PCA for Robust Visual Tracking , 2015, IEEE Transactions on Cybernetics.

[14]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Guizhong Liu,et al.  Visual Object Tracking Based on Combination of Local Description and Global Representation , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Lei Zhang,et al.  Real-Time Object Tracking Via Online Discriminative Feature Selection , 2013, IEEE Transactions on Image Processing.

[18]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[21]  Hongtao Lu,et al.  SURF Tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[22]  Michel Bierlaire,et al.  Sample and Pixel Weighting Strategies for Robust Incremental Visual Tracking , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[24]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[25]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[26]  Lei Zhang,et al.  Object Tracking via Dual Linear Structured SVM and Explicit Feature Map , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Wang Chuan-xu,et al.  A New Face Tracking Algorithm Based on Local Binary Pattern and Skin Color Information , 2008 .