Adaptive evolution of sexual systems in pedunculate barnacles

How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin.

[1]  Y. Yusa,et al.  Evolution of dwarf males and a variety of sexual modes in barnacles: an ESS approach , 2009 .

[2]  Y. Yusa,et al.  Reproductive ecology of the pedunculate barnacle Scalpellum stearnsii (Cirripedia: Lepadomorpha: Scalpellidae) , 2008, Journal of the Marine Biological Association of the United Kingdom.

[3]  E. Charnov The theory of sex allocation. , 1984, Monographs in population biology.

[4]  M. Whiting Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera , 2002 .

[5]  S. M. Eppley,et al.  Moving to mate: the evolution of separate and combined sexes in multicellular organisms , 2008, Journal of evolutionary biology.

[6]  J. Pannell What is functional androdioecy , 2002 .

[7]  C. Benvenuto,et al.  When males and hermaphrodites coexist: a review of androdioecy in animals. , 2006, Integrative and comparative biology.

[8]  W. Newman A REVIEW OF EXTANT SCILLAELEPAS CIRRIPEDIA SCALPELLIDAE INCLUDING RECOGNITION OF NEW SPECIES FROM THE NORTH ATLANTIC WESTERN INDIAN OCEAN AND NEW-ZEALAND , 1980 .

[9]  I. Pen,et al.  Sex Ratios - Concepts and Research Methods , 2002 .

[10]  B. Foster THE MARINE FAUNA OF NEW-ZEALAND BARNACLES CIRRIPEDIA THORACICA , 1978 .

[11]  M. Hadfield,et al.  LARVAL DEVELOPMENT AND COMPLEMENTAL MALES IN CHELONIBIA TESTUDINARIA, A BARNACLE COMMENSAL WITH SEA TURTLES , 2004 .

[12]  F. Vollrath Dwarf males. , 1998, Trends in ecology & evolution.

[13]  P. Raimondi,et al.  Evidence that Mating Group Size Affects Allocation of Reproductive Resources in a Simultaneous Hermaphrodite , 1991, The American Naturalist.

[14]  M. Pagel,et al.  Genotypic sex determination enabled adaptive radiations of extinct marine reptiles , 2009, Nature.

[15]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[16]  J. Komdeur,et al.  Sex allocation , 2012 .

[17]  I. Hardy Sex Ratios: Statistical analysis of sex ratio data , 2002 .

[18]  M. Barnes Egg production in cirripedes , 1989 .

[19]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[20]  E. Chapman,et al.  Evolutionary transitions among dioecy, androdioecy and hermaphroditism in limnadiid clam shrimp (Branchiopoda: Spinicaudata) , 2009, Journal of evolutionary biology.

[21]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[22]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[23]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[24]  Y. Yusa,et al.  Mating group size and evolutionarily stable pattern of sexuality in barnacles. , 2008, Journal of theoretical biology.

[25]  Y. Yusa,et al.  Dwarf Males of Octolasmis warwickii (Cirripedia: Thoracica): The First Example of Coexistence of Males and Hermaphrodites in the Suborder Lepadomorpha , 2010, The Biological Bulletin.

[26]  I. Svane Sex determination inScalpellum scalpellum (Cirripedia: Thoracica: Lepadomorpha), a hermaphroditic goose barnacle with dwarf males , 1986 .

[27]  L. Jesson,et al.  Correlated Evolution of Sexual System and Life-History Traits in Mosses , 2009, Evolution; international journal of organic evolution.

[28]  M. Pérez‐Losada,et al.  Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches. , 2004, Systematic biology.

[29]  M. Pérez‐Losada,et al.  Evolution of morphology, ontogeny and life cycles within the Crustacea Thecostraca , 2009, Arthropod Systematics & Phylogeny.

[30]  R. Meldola Sexual Selection , 1871, Nature.

[31]  M. Kelly,et al.  The evolution of mating systems in barnacles , 2010 .

[32]  Michael T. Ghiselin,et al.  The Economy of Nature and the Evolution of Sex , 1964 .

[33]  D. Crisp Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male , 1983 .

[34]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[35]  N. Annandale Malaysian Barnacles In The Indian Museum: With A List Of The Indian Pedunculata , 2009 .

[36]  P. Mclaughlin,et al.  Comparative Morphology of Complemental Males in Four Species of Balanus (Cirripedia Thoracica) 1) , 1972 .

[37]  R. Torices,et al.  Phylogenetic analysis of sexual systems in Inuleae (Asteraceae). , 2009, American journal of botany.

[38]  J. Høeg Sex and the single cirripede: a phylogenetic perspective , 1995 .

[39]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[40]  M. Pagel,et al.  Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo , 2006, The American Naturalist.

[41]  W. Klepal A review of the comparative anatomy of the males in cirripedes , 1987 .

[42]  B. Charlesworth,et al.  A Model for the Evolution of Dioecy and Gynodioecy , 1978, The American Naturalist.

[43]  Y. Yusa,et al.  Ecology of a parasitic barnacle, Koleolepas avis: relationship to the hosts, distribution, left–right asymmetry and reproduction , 2001, Journal of the Marine Biological Association of the United Kingdom.

[44]  L. Buhl‐Mortensen,et al.  Reproduction and larval development in three scalpellid barnacles, Scalpellum scalpellum (Linnaeus 1767), Ornatoscalpellum stroemii (M. Sars 1859) and Arcoscalpellum michelottianum (Seguenza 1876), Crustacea: Cirripedia: Thoracica): implications for reproduction and dispersal in the deep sea , 2006 .

[45]  J. Pannell The Evolution and Maintenance of Androdioecy , 2002 .

[46]  M. Pérez‐Losada,et al.  The tempo and mode of barnacle evolution. , 2008, Molecular phylogenetics and evolution.

[47]  N. Gotelli,et al.  Male parasitism and intrasexual competition in a burrowing barnacle , 1992, Oecologia.

[48]  B. Foster Further records and classification of scalpellid barnacles (Cirripedia: Thoracica) from New Zealand , 1980 .