Design and fabrication of custom mandible titanium tray based on rapid prototyping.

UNLABELLED During the past few years, the combination of medical imaging and rapid manufacturing technique has proven to be a very important development. On the other hand, the conventional method has some drawbacks. For example, it takes longer time to complete an operation and it also presents some difficulty in matching the repaired contours. With advanced software and hardware, an image of an undamaged bone similar to that of the patient can be made from computerised tomography (CT); and a physical object constructed by the mirror-processed image data can be quickly fabricated with a high degree of fitting with the patient's bone. This paper presents a methodology for the design and fabrication of an individual titanium tray for the repair of mandible defects. Methods for the tray modeling using CAD system are presented: A 3D model of the bony defect is generated after the acquisition of helical CT data. An individual tray is designed using freeform surfaces geometries and fabricated by rapid prototyping (RP) technology. The results of tray filling with bone-grafting materials are then presented. RESULT the tray is inserted into the patient mandible segment. The symmetry and reconstruction quality contour of the repaired mandible was satisfactory. Thus, the patient is able to eat normally. The bone-grafting material harvested from the anterior ilium was low. The clinical experience showed that rapid prototyping and reverse engineering software are effective methods of fabricating custom trays for mandibular reconstruction after bone loss due to a tumor.

[1]  A. Harders,et al.  Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data. , 1995, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[2]  N Samman,et al.  Functional reconstruction of the mandible: a modified titanium mesh system. , 1998, International journal of oral and maxillofacial surgery.

[3]  T W Chow,et al.  Custom-made titanium mandibular reconstruction tray. , 1999, Australian dental journal.

[4]  R Day,et al.  Orofacial prosthesis design and fabrication using stereolithography. , 2000, Australian dental journal.

[5]  T Fannin,et al.  Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. , 1999, Journal of medical engineering & technology.

[6]  J. Bill,et al.  Stereolithography in oral and maxillofacial operation planning. , 1995, International journal of oral and maxillofacial surgery.

[7]  N Samman,et al.  Mandibular reconstruction with the Dacron urethane tray: a radiologic assessment of bone remodeling. , 1994, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[8]  T M Barker,et al.  Integration of 3-D medical imaging and rapid prototyping to create stereolithographic models. , 1993, Australasian physical & engineering sciences in medicine.