Sequential quadratic programming for certain parameter identification problems
暂无分享,去创建一个
[1] G. R. Walsh,et al. Methods Of Optimization , 1976 .
[2] R. Rockafellar. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .
[3] Shih-Ping Han. A globally convergent method for nonlinear programming , 1975 .
[4] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .
[5] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[6] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 2: Conditions of Levitin–Miljutin–Osmolovskii Type , 1979 .
[7] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 1: A Reduction Theorem and First Order Conditions , 1979 .
[8] C. Kravaris,et al. Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.
[9] P. Boggs,et al. A family of descent functions for constrained optimization , 1984 .
[10] C. Kravaris,et al. Identification of spatially varying parameters in distributed parameter systems by discrete regularization , 1986 .
[11] Ya-Xiang Yuan,et al. A recursive quadratic programming algorithm that uses differentiable exact penalty functions , 1986, Math. Program..
[12] K. Kunisch,et al. Regularity properties in parameter estimation of diffusion coefficients in one dimensional elliptic boundary value problems , 1986 .
[13] E. Allgower,et al. A mesh-independence principle for operator equations and their discretizations , 1986 .
[14] R. Fletcher. Practical Methods of Optimization , 1988 .
[15] K. Kunisch,et al. The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .