TerraSAR-X Precise Trajectory Estimation and Quality Assessment

Since the launch of TerraSAR-X on June 15, 2007, the required precise orbit products have been provided by the German Space Operations Center to support operational spaceborne synthetic aperture radar (SAR) and interferometric SAR image processing. The TerraSAR-X precise trajectory is reconstructed solely based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The GPS-based precise orbit determination (POD) strategy used in the estimation of the precise TerraSAR-X orbit and its performance will be fully described in this paper. Five-month statistics from the internal and external orbit assessment indicate a root-mean-squared 3-D orbit accuracy of better than 10 and 20 cm for the precise science orbit and precise rapid orbit (PRO) products, respectively. The POD performance of the backup single-frequency MosaicGNSS receiver to support operational PRO product generation in case of IGOR tracking failure or interruptions is described as well.

[1]  Yoke T. Yoon,et al.  Antenna phase center calibration for precise positioning of LEO satellites , 2009 .

[2]  Oliver Montenbruck,et al.  In-flight performance analysis of the CHAMP BlackJack GPS Receiver , 2003 .

[3]  Oliver Montenbruck,et al.  Precise Maneuver Calibration for Remote Sensing Satellites , 2006 .

[4]  Rolf König,et al.  The Tracking, Occultation and Ranging (TOR) instrument onboard TerraSAR-X and on TanDEM-X , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[6]  Oliver Montenbruck,et al.  PRECISE ORBIT DETERMINATION FOR THE TERRASAR-X MISSION , 2006 .

[7]  Oliver Montenbruck,et al.  Reduced dynamic orbit determination using GPS code and carrier measurements , 2005 .

[8]  Pascal Willis,et al.  Initial Orbit Determination Results for Jason‐1: Towards a 1 cm Orbit , 2002 .

[9]  Oliver Montenbruck,et al.  Performance comparison of semicodeless GPS receivers for LEO satellites , 2006 .

[10]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[11]  Marco Schwerdt,et al.  TerraSAR-X calibration - first results , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Dieter Ulrich,et al.  In-Flight Performance Assessment of the Single Frequency MosaicGNSS Receiver for Satellite Navigation , 2008 .

[13]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[14]  Leos Mervart,et al.  CODE IGS Analysis Center Technical Report 2000 , 2001 .

[15]  Willy Bertiger,et al.  Results of an Internet-Based Dual-Frequency Global Differential GPS System , 2000 .

[16]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[17]  Nikolaus Faller,et al.  TerraSAR-X and TanDEM-X: Revolution in spaceborne radar , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Oliver Montenbruck,et al.  Tracking and orbit determination performance of the GRAS instrument on MetOp-A , 2008 .

[19]  S. Buckreuss,et al.  The terraSAR-X satellite project , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  Marco Schwerdt,et al.  TerraSAR-X Calibration Results , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Michael Eineder,et al.  Efficient simulation of SAR interferograms of large areas and of rugged terrain , 2003, IEEE Trans. Geosci. Remote. Sens..