New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics.

Streptococcus thermophilus is a major dairy starter used for the manufacture of yoghurt and cheese. The access to three genome sequences, comparative genomics and multilocus sequencing analyses suggests that this species recently emerged and is still undergoing a process of regressive evolution towards a specialised bacterium for growth in milk. Notably, S. thermophilus has maintained a well-developed nitrogen metabolism whereas its sugar catabolism has been subjected to a high level of degeneracy due to a paucity of carbon sources in milk. Furthermore, while pathogenic streptococci are recognised for a high capacity to expose proteins at their cell surface in order to achieve cell adhesion or to escape the host immune system, S. thermophilus has nearly lost this unique feature as well as many virulence-related functions. Although gene decay is obvious in S. thermophilus genome evolution, numerous small genomic islands, which were probably acquired by horizontal gene transfer, comprise important industrial phenotypic traits such as polysaccharide biosynthesis, bacteriocin production, restriction-modification systems or oxygen tolerance.

[1]  P. Renault,et al.  Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators , 2004, Antonie van Leeuwenhoek.

[2]  S. Condon,et al.  Responses of lactic acid bacteria to oxygen , 1987 .

[3]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[4]  W. Fischer,et al.  On the basic structure of poly(glycerophosphate) lipoteichoic acids. , 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[5]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[6]  P. Renault,et al.  Sulfur Amino Acid Metabolism and Its Control in Lactococcus lactis IL1403 , 2005, Journal of bacteriology.

[7]  Elliot J. Lefkowitz,et al.  Genome of the Bacterium Streptococcus pneumoniae Strain R6 , 2001, Journal of bacteriology.

[8]  P. Berche,et al.  Identification of Streptococci to Species Level by Sequencing the Gene Encoding the Manganese-Dependent Superoxide Dismutase , 1998, Journal of Clinical Microbiology.

[9]  A. Mathot,et al.  Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. , 2003, Journal of dairy science.

[10]  B. Poolman,et al.  Phosphorylation State of HPr Determines the Level of Expression and the Extent of Phosphorylation of the Lactose Transport Protein ofStreptococcus thermophilus * , 2000, The Journal of Biological Chemistry.

[11]  R. Burne,et al.  Transcriptional Regulation of theStreptococcus salivarius 57.I Urease Operon , 1998, Journal of bacteriology.

[12]  F. Taddei,et al.  Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut , 2001, Science.

[13]  B. Poolman,et al.  HPr(His∼P)-mediated Phosphorylation Differently Affects Counterflow and Proton Motive Force-driven Uptake via the Lactose Transport Protein of Streptococcus thermophilus * , 2000, The Journal of Biological Chemistry.

[14]  Thomas Kruse,et al.  The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane‐bound complex , 2004, Molecular microbiology.

[15]  P. Giffard,et al.  The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system , 1993, Journal of bacteriology.

[16]  M. Añón,et al.  Formate Production by Streptococcus thermophilus Cultures , 1991 .

[17]  D. Carminati,et al.  Amino acid requirements and peptidase activities of Streptococcus salivarius subsp. thermophilus. , 1995, The Journal of applied bacteriology.

[18]  A. Grossman,et al.  Identification of Catabolite Repression as a Physiological Regulator of Biofilm Formation by Bacillus subtilis by Use of DNA Microarrays , 2003, Journal of bacteriology.

[19]  P. Renault,et al.  Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis , 2001, Archives of Microbiology.

[20]  M. Kleerebezem,et al.  Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus. , 2004, Systematic and applied microbiology.

[21]  P. Renault,et al.  Transcriptional Pattern of Genes Coding for the Proteolytic System of Lactococcus lactis and Evidence for Coordinated Regulation of Key Enzymes by Peptide Supply , 2001, Journal of bacteriology.

[22]  E. Hanski,et al.  A locus of group A streptococcus involved in invasive disease and DNA transfer , 2002, Molecular microbiology.

[23]  P. Lawman,et al.  Molecular cloning of the extracellular endodextranase of Streptococcus salivarius , 1991, Journal of bacteriology.

[24]  W. Hillen,et al.  Global control of sugar metabolism: a gram-positive solution. , 2002 .

[25]  Jeremija Lj. Rašić,et al.  Yoghurt : scientific grounds, technology, manufacture and preparations , 1978 .

[26]  A. Thibessard,et al.  Effects of rodA and pbp2b Disruption on Cell Morphology and Oxidative Stress Response of Streptococcus thermophilus CNRZ368 , 2002, Journal of bacteriology.

[27]  K. Kazmierczak,et al.  Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator , 2004, Molecular microbiology.

[28]  S. Ehrlich,et al.  tRNATrp as a key element of antitermination in the Lactococcus lactis trp operon , 1998, Molecular microbiology.

[29]  L. Hancock,et al.  Systematic Inactivation and Phenotypic Characterization of Two-Component Signal Transduction Systems of Enterococcus faecalis V583 , 2004, Journal of bacteriology.

[30]  D. Cvitkovitch Genetic competence and transformation in oral streptococci. , 2001, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[31]  M. Page,et al.  Genetic Analysis and Functional Characterization of the Streptococcus pneumoniae vic Operon , 2002, Infection and Immunity.

[32]  H. Hassan,et al.  Characterization of superoxide dismutase in Streptococcus thermophilus , 1997, Applied and environmental microbiology.

[33]  Laurie E. Comstock,et al.  Extensive surface diversity of a commensal microorganism by multiple DNA inversions , 2001, Nature.

[34]  S. D. Hogg,et al.  Occurrence of lipoteichoic acid in oral streptococci. , 1997, International journal of systematic bacteriology.

[35]  R. Burne,et al.  Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression. , 2000, Microbiology.

[36]  V. Marshall,et al.  The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria , 2001 .

[37]  P. L. Manachini,et al.  Characterization of urease genes cluster of Streptococcus thermophilus , 2004, Journal of applied microbiology.

[38]  B. Charra,et al.  Long-Term Outcome of Permanent Hemodialysis Catheters: A Controlled Study , 2001, Blood Purification.

[39]  S. Moineau,et al.  Genetic and Biochemical Characterization of the Phosphoenolpyruvate:Glucose/Mannose Phosphotransferase System of Streptococcus thermophilus , 2003, Applied and Environmental Microbiology.

[40]  M. Hecker,et al.  Non‐specific, general and multiple stress resistance of growth‐restricted Bacillus subtilis cells by the expression of the σB regulon , 1998, Molecular microbiology.

[41]  J. Cerning Exocellular polysaccharides produced by lactic acid bacteria. , 1990, FEMS microbiology reviews.

[42]  M. Yvon,et al.  Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids , 2004, Applied and Environmental Microbiology.

[43]  J. Brock,et al.  Iron‐binding Proteins , 1989, Acta paediatrica Scandinavica. Supplement.

[44]  R. Facklam,et al.  What Happened to the Streptococci: Overview of Taxonomic and Nomenclature Changes , 2002, Clinical Microbiology Reviews.

[45]  Jaime A Cury,et al.  The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. , 2004, Carbohydrate research.

[46]  M. Baptista,et al.  Contribution of Mn-Cofactored Superoxide Dismutase (SodA) to the Virulence of Streptococcus agalactiae , 2001, Infection and Immunity.

[47]  M. Kleerebezem,et al.  High-Level Acetaldehyde Production in Lactococcus lactis by Metabolic Engineering , 2005, Applied and Environmental Microbiology.

[48]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[49]  V. Monnet,et al.  Presence of additional peptidases in Streptococcus thermophilus CNRZ 302 compared to Lactococcus lactis , 1997, Journal of applied microbiology.

[50]  M. Débarbouillé,et al.  Regulation of the Acetoin Catabolic Pathway Is Controlled by Sigma L in Bacillus subtilis , 2001, Journal of bacteriology.

[51]  K. Amrein,et al.  Microarray-Based Identification of a NovelStreptococcus pneumoniae Regulon Controlled by an Autoinduced Peptide , 2000, Journal of bacteriology.

[52]  B. Poolman,et al.  Energy transduction in lactic acid bacteria. , 1993, FEMS microbiology reviews.

[53]  W. Hillen,et al.  Global control of sugar metabolism: a Gram-positive solution , 2004, Antonie van Leeuwenhoek.

[54]  F. Borges,et al.  cse, a Chimeric and Variable Gene, Encodes an Extracellular Protein Involved in Cellular Segregation in Streptococcus thermophilus , 2005, Journal of bacteriology.

[55]  J. Hoch,et al.  A Two-Component Signal Transduction System Essential for Growth of Bacillus subtilis: Implications for Anti-Infective Therapy , 1998, Journal of bacteriology.

[56]  L. De Vuyst,et al.  UDP-N-Acetylglucosamine 4-Epimerase Activity Indicates the Presence of N-Acetylgalactosamine in Exopolysaccharides of Streptococcus thermophilus Strains , 2001, Applied and Environmental Microbiology.

[57]  G. Corrieu,et al.  Selection and properties of Streptococcus thermophilus mutants deficient in urease. , 2004, Journal of dairy science.

[58]  R. C. Fahey,et al.  Copyright © 1998, American Society for Microbiology Import and Metabolism of Glutathione by Streptococcus mutans , 1997 .

[59]  J. Musser,et al.  Virulence control in group A Streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Spratt,et al.  Multilocus sequence typing. , 1999, Trends in microbiology.

[61]  Sébastien Guiral,et al.  Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells , 2004, Molecular microbiology.

[62]  J. Snoep,et al.  Genetic and physiological analysis of the lethal effect of L-(+)-lactate dehydrogenase deficiency in Streptococcus mutans: complementation by alcohol dehydrogenase from Zymomonas mobilis , 1996, Infection and immunity.

[63]  Mur1, a Streptococcus thermophilus peptidoglycan hydrolase devoid of a specific cell wall binding domain. , 2000, FEMS microbiology letters.

[64]  J. Ferretti,et al.  Transcriptional Regulation of theStreptococcus mutans gal Operon by the GalR Repressor , 1998, Journal of bacteriology.

[65]  J. Claverys,et al.  Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae. , 1994, Journal of molecular biology.

[66]  H. Jonsson,et al.  A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. , 2002, Microbiology.

[67]  G. Stewart,et al.  Essential Nature of the mreC Determinant of Bacillus subtilis , 2003, Journal of bacteriology.

[68]  M. Kleerebezem,et al.  Complete genome sequence of Lactobacillus plantarum WCFS1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  P. Renault,et al.  Characterization of a Cell Envelope-Associated Proteinase Activity from Streptococcus thermophilus H-Strains , 1993, Applied and environmental microbiology.

[70]  R. Morona,et al.  Mutational Analysis of the Carboxy-Terminal (YGX)4 Repeat Domain of CpsD, an Autophosphorylating Tyrosine Kinase Required for Capsule Biosynthesis in Streptococcus pneumoniae , 2003, Journal of bacteriology.

[71]  O. Griffith,et al.  Glutathione Synthesis in Streptococcus agalactiae , 2005, Journal of Biological Chemistry.

[72]  T. Vernet,et al.  The PECACE domain: a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria , 2005, BMC Genomics.

[73]  D. McMahon,et al.  Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. , 2003, Journal of dairy science.

[74]  Sylvain Moineau,et al.  Galactose and Lactose Genes from the Galactose-Positive Bacterium Streptococcus salivarius and the Phylogenetically Related Galactose-Negative Bacterium Streptococcus thermophilus: Organization, Sequence, Transcription, and Activity of the gal Gene Products , 2002, Journal of bacteriology.

[75]  M. Caparon,et al.  Contribution of NADH Oxidase to Aerobic Metabolism of Streptococcus pyogenes , 2000, Journal of bacteriology.

[76]  Peter S. C. Lau,et al.  Natural Genetic Transformation ofStreptococcus mutans Growing in Biofilms , 2001, Journal of bacteriology.

[77]  A. Mercenier,et al.  Isolation and characterization of chromosomal promoters of Streptococcus salivarius subsp. thermophilus , 1991, Applied and environmental microbiology.

[78]  D. Karamata,et al.  Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. , 2002, Microbiology.

[79]  J Hacker,et al.  Whole genome plasticity in pathogenic bacteria. , 2001, Current opinion in microbiology.

[80]  ScienceDirect FEMS microbiology reviews , 1993 .

[81]  R. Siezen Multi-domain, cell-envelope proteinases of lactic acid bacteria , 1999, Antonie van Leeuwenhoek.

[82]  W. Weyler,et al.  Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole‐genome analyses , 2001, Molecular microbiology.

[83]  N. Moran,et al.  Calibrating bacterial evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Ian T. Paulsen,et al.  Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  W. M. Vos,et al.  Comparison of lantibiotic gene clusters and encoded proteins , 1996, Antonie van Leeuwenhoek.

[86]  T. Mitchell,et al.  The pathogenesis of streptococcal infections: from Tooth decay to meningitis , 2003, Nature Reviews Microbiology.

[87]  S. Ehrlich,et al.  Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis , 1992, Journal of bacteriology.

[88]  M. Kleerebezem,et al.  Cofactor Engineering: a Novel Approach to Metabolic Engineering in Lactococcus lactis by Controlled Expression of NADH Oxidase , 1998, Journal of bacteriology.

[89]  W. D. de Vos,et al.  Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA , 1998, Molecular microbiology.

[90]  S. Vincent,et al.  Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. , 2001, European journal of biochemistry.

[91]  P. Trieu-Cuot,et al.  Meningitis Due to Streptococcus salivarius , 2001, Journal of Clinical Microbiology.

[92]  K. Schleifer 5 Analysis of the Chemical Composition and Primary Structure of Murein , 1985 .

[93]  A. Hillier,et al.  Metabolism of Streptococcus thermophilus. 3. Influence on the level of bacterial metabolites in cheddar cheese , 1982 .

[94]  P. Hols,et al.  The biosynthesis and functionality of the cell-wall of lactic acid bacteria , 1999, Antonie van Leeuwenhoek.

[95]  Bruce A. Roe,et al.  Complete genome sequence of an M1 strain of Streptococcus pyogenes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[96]  F. Borges,et al.  Characterisation of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368 , 2004, Archives of Microbiology.

[97]  D. Roy,et al.  The Doubly Phosphorylated Form of HPr, HPr(Ser-P)(His∼P), Is Abundant in Exponentially Growing Cells of Streptococcus thermophilus and Phosphorylates the Lactose Transporter LacS as Efficiently as HPr(His∼P) , 2005, Applied and Environmental Microbiology.

[98]  Luc De Vuyst,et al.  Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria , 2001 .

[99]  V. Marshall,et al.  Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. , 2001, Biotechnology advances.

[100]  F. Levander,et al.  Requirement for Phosphoglucomutase in Exopolysaccharide Biosynthesis in Glucose- and Lactose-Utilizing Streptococcus thermophilus , 2001, Applied and Environmental Microbiology.

[101]  M. Kleerebezem,et al.  Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. , 2001, Journal of molecular microbiology and biotechnology.

[102]  Carmen Buchrieser,et al.  Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease , 2002, Molecular microbiology.

[103]  R. Burne,et al.  cis-Acting elements that regulate the low-pH-inducible urease operon of Streptococcus salivarius. , 2002, Microbiology.

[104]  M. Kleerebezem,et al.  Metabolic Engineering of Acetaldehyde Production by Streptococcus thermophilus , 2002, Applied and Environmental Microbiology.

[105]  G. Corrieu,et al.  Effect of the metabolism of urea on the acidifying activity of Streptococcus thermophilus. , 2004, Journal of dairy science.

[106]  R. Burne,et al.  Dual Functions of Streptococcus salivarius Urease , 2000, Journal of bacteriology.

[107]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[108]  J. Yother,et al.  CpsB Is a Modulator of Capsule-associated Tyrosine Kinase Activity in Streptococcus pneumoniae * , 2001, The Journal of Biological Chemistry.

[109]  F. Borges,et al.  Identification of Streptococcus thermophilus CNRZ368 Genes Involved in Defense against Superoxide Stress , 2004, Applied and Environmental Microbiology.

[110]  Cloning, nucleotide sequence, and disruption of Streptococcus mutans glutathione reductase gene (gor). , 1999, Bioscience, biotechnology, and biochemistry.

[111]  V. Monnet,et al.  Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. , 2002, Microbiology.

[112]  Y. Kamio,et al.  An Iron-Binding Protein, Dpr, from Streptococcus mutans Prevents Iron-Dependent Hydroxyl Radical Formation In Vitro , 2002, Journal of bacteriology.

[113]  S. Shahbal,et al.  High cell wall-associated proteinase activity of some Streptococcus thermophilus strains (H-strains) correlated with a high acidification rate in milk , 1991 .

[114]  S. Foster,et al.  Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. , 2000, Microbiology.

[115]  R. Burne,et al.  Streptococcus salivarius urease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system. , 1998, FEMS microbiology letters.

[116]  P. V. D. van den Bogaard,et al.  Activation of Silent gal Genes in thelac-gal Regulon of Streptococcus thermophilus , 2001, Journal of bacteriology.

[117]  O. Kuipers,et al.  ArgR and AhrC Are Both Required for Regulation of Arginine Metabolism in Lactococcus lactis , 2004, Journal of bacteriology.

[118]  O. Carmel-Harel,et al.  Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. , 2000, Annual review of microbiology.

[119]  J. Claverys,et al.  Bacterial "competence" genes: signatures of active transformation, or only remnants? , 2003, Trends in microbiology.

[120]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[121]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[122]  P. Renault,et al.  Regulation of Expression of the Lactococcus lactis Histidine Operon , 1999, Journal of bacteriology.

[123]  I. Kiyosawa,et al.  Oxygen uptake activity and aerobic metabolism of Streptococcus thermophilus STH450. , 1987, Journal of dairy science.

[124]  B. Mollet,et al.  Applications of exopolysaccharides in the dairy industry , 2001 .

[125]  V. Monnet Bacterial oligopeptide-binding proteins , 2003, Cellular and Molecular Life Sciences CMLS.

[126]  R. Clubb,et al.  A Comparative Genome Analysis Identifies Distinct Sorting Pathways in Gram-Positive Bacteria , 2004, Infection and Immunity.

[127]  D. Ercolini,et al.  Sequence heterogeneity in the lacSZ operon of Streptococcus thermophilus and its use in PCR systems for strain differentiation. , 2005, Research in microbiology.

[128]  V. Monnet,et al.  Casein Utilization by Streptococcus thermophilus Results in a Diauxic Growth in Milk , 2002, Applied and Environmental Microbiology.

[129]  R. Burne,et al.  Identification and Characterization of the Nickel Uptake System for Urease Biogenesis in Streptococcus salivarius 57.I , 2003, Journal of bacteriology.

[130]  S. Moineau,et al.  Characterization of a Galactokinase-Positive Recombinant Strain of Streptococcus thermophilus , 2004, Applied and Environmental Microbiology.

[131]  P. L. Manachini,et al.  Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products , 2002, Journal of applied microbiology.

[132]  V. Juillard,et al.  Phénomènes de coopération et d'inhibition entre les bactéries lactiques utilisées en industrie laitière , 1987 .

[133]  Francis C. Neuhaus,et al.  A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[134]  B. Mollet,et al.  Disruption of the gene encoding penicillin‐binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6 , 1996, Molecular microbiology.

[135]  A. McEwan,et al.  Molecular analysis of the psa permease complex of Streptococcus pneumoniae , 2004, Molecular microbiology.

[136]  R. P. Ross,et al.  Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. , 2002, Biochimie.

[137]  R. Dalbey,et al.  Sec-translocase mediated membrane protein biogenesis. , 2004, Biochimica et biophysica acta.

[138]  T. Koga,et al.  Genes Involved in Cell Wall Localization and Side Chain Formation of Rhamnose-Glucose Polysaccharide inStreptococcus mutans , 1998, Journal of bacteriology.

[139]  V. Monnet,et al.  Branched-Chain Amino Acid Biosynthesis Is Essential for Optimal Growth of Streptococcus thermophilus in Milk , 2000, Applied and Environmental Microbiology.

[140]  Horst Neve,et al.  Revival of the species Streptococcus thermophilus (ex Orla-Jensen, 1919) nom. rev. , 1991 .

[141]  J. Frank,et al.  Rheological Properties of Yogurt Made with Encapsulated Nonropy Lactic Cultures , 1996 .

[142]  D. Touati,et al.  Iron and oxidative stress in bacteria. , 2000, Archives of biochemistry and biophysics.

[143]  G. Venemâ,et al.  Identification of a gene required for maturation of an extracellular lactococcal serine proteinase , 1989, Journal of bacteriology.

[144]  P. Renault,et al.  Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched‐chain amino acids in Lactococcus lactis , 2001, Molecular microbiology.

[145]  A. Tomasz,et al.  The pgdA Gene Encodes for a PeptidoglycanN-Acetylglucosamine Deacetylase in Streptococcus pneumoniae * , 2000, The Journal of Biological Chemistry.

[146]  H. Tettelin Streptococcal genomes provide food for thought , 2004, Nature Biotechnology.

[147]  M. Seki,et al.  Analysis of Loci Required for Determination of Serotype Antigenicity in Streptococcus mutans and Its Clinical Utilization , 2003, Journal of Clinical Microbiology.

[148]  Michiel Kleerebezem,et al.  Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior , 2001, Peptides.

[149]  D. Mengin-Lecreulx,et al.  Synthesis of the l-Alanyl-l-alanine Cross-bridge of Enterococcus faecalis Peptidoglycan* , 2002, The Journal of Biological Chemistry.

[150]  S. Farr,et al.  Oxidative stress responses in Escherichia coli and Salmonella typhimurium. , 1991, Microbiological reviews.

[151]  T Ezaki,et al.  Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. , 1995, International journal of systematic bacteriology.

[152]  J. Yother,et al.  Positive Correlation between Tyrosine Phosphorylation of CpsD and Capsular Polysaccharide Production in Streptococcus pneumoniae , 2003, Journal of bacteriology.

[153]  T. J. Mitchell,et al.  Role of Manganese-Containing Superoxide Dismutase in Oxidative Stress and Virulence of Streptococcus pneumoniae , 2000, Infection and Immunity.

[154]  Luke E. Ulrich,et al.  One-component systems dominate signal transduction in prokaryotes. , 2005, Trends in microbiology.

[155]  Yutaka Sato,et al.  Functions of Two Types of NADH Oxidases in Energy Metabolism and Oxidative Stress of Streptococcus mutans , 1999, Journal of bacteriology.

[156]  H. Deeth,et al.  Yogurt: Technology and Biochemistry 1. , 1980, Journal of food protection.

[157]  P. Bracquart,et al.  Uptake of Branched-Chain Amino Acids by Streptococcus thermophilus , 1983, Applied and environmental microbiology.

[158]  P. Renault,et al.  Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator , 2004, Molecular microbiology.

[159]  V. Monnet,et al.  Streptococcus thermophilus Cell Wall-Anchored Proteinase: Release, Purification, and Biochemical and Genetic Characterization , 2000, Applied and Environmental Microbiology.

[160]  W. Fischer Physiology of lipoteichoic acids in bacteria. , 1988, Advances in microbial physiology.

[161]  S. Ehrlich,et al.  The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. , 2001, Genome research.

[162]  H. Pakrasi,et al.  Investigation of the Functional Role of Ctp Proteins in the Cyanobacterium Synechocystis sp. PCC 6803 , 2002, Microbiology.

[163]  F. Levander,et al.  Enhanced Exopolysaccharide Production by Metabolic Engineering of Streptococcus thermophilus , 2002, Applied and Environmental Microbiology.

[164]  A. Goffeau,et al.  Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus , 2004, Nature Biotechnology.

[165]  A. Thibessard,et al.  Hydrogen peroxide effects on Streptococcus thermophilus CNRZ368 cell viability. , 2001, Research in microbiology.

[166]  A. Ogunniyi,et al.  The NADH oxidase of Streptococcus pneumoniae : its involvement in competence and virulence , 1999, Molecular microbiology.

[167]  P. Fox,et al.  Cheese: Chemistry, Physics and Microbiology , 1993, Springer US.

[168]  J. Cerning Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria , 1995 .

[169]  E. Hartmann,et al.  Prokaryotic Utilization of the Twin-Arginine Translocation Pathway: a Genomic Survey , 2003, Journal of bacteriology.

[170]  R. Fleischmann,et al.  Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays , 2004, Molecular microbiology.

[171]  G. Corrieu,et al.  Regulation of branched‐chain amino acid biosynthesis by α‐acetolactate decarboxylase in Streptococcus thermophilus , 2003, Letters in applied microbiology.

[172]  Alex Bateman,et al.  The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. , 2003, Trends in biochemical sciences.

[173]  J. Claverys,et al.  Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. , 2002, Frontiers in bioscience : a journal and virtual library.

[174]  S. Ehrlich,et al.  Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. , 2000, Microbiology.

[175]  J. Hoch,et al.  Two-component and phosphorelay signal transduction. , 2000, Current opinion in microbiology.

[176]  N. Asanuma,et al.  Molecular Characterization of CcpA and Involvement of This Protein in Transcriptional Regulation of Lactate Dehydrogenase and Pyruvate Formate-Lyase in the Ruminal Bacterium Streptococcus bovis , 2004, Applied and Environmental Microbiology.

[177]  Runying Tian,et al.  Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[178]  B. Mollet,et al.  Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6 , 1996, Journal of bacteriology.

[179]  M. Kleerebezem,et al.  Control of Lactose Transport, β-Galactosidase Activity, and Glycolysis by CcpA in Streptococcus thermophilus: Evidence for Carbon Catabolite Repression by a Non-Phosphoenolpyruvate-Dependent Phosphotransferase System Sugar , 2000, Journal of bacteriology.

[180]  G. Linden,et al.  Uptake of glutamic acid by Streptococcus salivarius subsp. thermophilus CNRZ 302 , 1989, Journal of Dairy Research.

[181]  P. Postma,et al.  Phosphorylation and Functional Properties of the IIA Domain of the Lactose Transport Protein of Streptococcus thermophilus , 1999, Journal of bacteriology.

[182]  M. Chaussee,et al.  Rgg Regulates Growth Phase-Dependent Expression of Proteins Associated with Secondary Metabolism and Stress in Streptococcus pyogenes , 2004, Journal of bacteriology.

[183]  A Ott,et al.  Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors. , 2000, Journal of agricultural and food chemistry.

[184]  V. Juillard,et al.  Development of a minimal chemically‐defined medium for the exponential growth of Streptococcus thermophilus , 2001, Journal of applied microbiology.

[185]  A. Falciatore,et al.  Proline biosynthesis in Streptococcus thermophilus: characterization of the proBA operon and its products. , 1996, Microbiology.

[186]  P. Caspers,et al.  Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. , 1999, Gene.

[187]  V. Monnet,et al.  Three Oligopeptide-binding Proteins Are Involved in the Oligopeptide Transport of Streptococcus thermophilus * , 2002, The Journal of Biological Chemistry.

[188]  D. Roy,et al.  Phosphorylation of Streptococcus salivarius Lactose Permease (LacS) by HPr(His∼P) and HPr(Ser-P)(His∼P) and Effects on Growth , 2003, Journal of bacteriology.

[189]  M. Kleerebezem,et al.  Lactococcus lactis as a Cell Factory for High-Level Diacetyl Production , 2000, Applied and Environmental Microbiology.

[190]  J. Echenique,et al.  Competence Repression under Oxygen Limitation through the Two-Component MicAB Signal-Transducing System inStreptococcus pneumoniae and Involvement of the PAS Domain of MicB , 2001, Journal of bacteriology.