Global Solutions of Variational Models with Convex Regularization

We propose an algorithmic framework for computing global solutions of variational models with convex regularity terms that permit quite arbitrary data terms. While the minimization of variational problems with convex data and regularity terms is straightforward (using, for example, gradient descent), this is no longer trivial for functionals with nonconvex data terms. Using the theoretical framework of calibrations, the original variational problem can be written as the maximum flux of a particular vector field going through the boundary of the subgraph of the unknown function. Upon relaxation this formulation turns the problem into a convex problem, although in a higher dimension. In order to solve this problem, we propose a fast primal-dual algorithm which significantly outperforms existing algorithms. In experimental results we show the application of our method to outlier filtering of range images and disparity estimation in stereo images using a variety of convex regularity terms.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  G. Bouchitté,et al.  The calibration method for the Mumford-Shah functional and free-discontinuity problems , 2001, math/0105013.

[3]  Michiel Hazewinkel,et al.  Cartesian currents in the calculus of variations , 2003 .

[4]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  L. Popov A modification of the Arrow-Hurwicz method for search of saddle points , 1980 .

[7]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, CVPR.

[9]  Davi Geiger,et al.  Segmentation by grouping junctions , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[10]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[11]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  John Staples,et al.  The Maximum Flow Problem is Log Space Complete for P , 1982, Theor. Comput. Sci..

[13]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[14]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[16]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[18]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[19]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[20]  M. Giaquinta Cartesian currents in the calculus of variations , 1983 .

[21]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[22]  Vladimir Kolmogorov,et al.  New algorithms for convex cost tension problem with application to computer vision , 2009, Discret. Optim..

[23]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[24]  Gianni Dal Maso,et al.  Integral representation on BV(ω) of Γ-limits of variational integrals , 1979 .

[25]  Daniel Cremers,et al.  A Convex Formulation of Continuous Multi-label Problems , 2008, ECCV.

[26]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[27]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[28]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[29]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[30]  W. Ziemer Weakly differentiable functions , 1989 .

[31]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[32]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  J. Sivaloganathan CARTESIAN CURRENTS IN THE CALCULUS OF VARIATIONS I: CARTESIAN CURRENTS (Ergebnisse der Mathematik und ihrer Grenzgebiete (3), A Series of Modern Surveys in Mathematics 37) , 2000 .

[34]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[35]  D. Schlesinger,et al.  TRANSFORMING AN ARBITRARY MINSUM PROBLEM INTO A BINARY ONE , 2006 .

[36]  H. Fédérer Geometric Measure Theory , 1969 .

[37]  A. Chambolle An algorithm for Mean Curvature Motion , 2004 .

[38]  L. Evans Measure theory and fine properties of functions , 1992 .

[39]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[40]  A. Chambolle Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1 , 2001 .

[41]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[43]  Daniel Cremers,et al.  An Experimental Comparison of Discrete and Continuous Shape Optimization Methods , 2008, ECCV.