Requirements and boundary conditions for fish passes of non-sport fish species based on Chilean experiences

Most artificial fish passes have been developed in Northern temperate rivers and are designed to serve large, migratory sport fish species (mostly salmonids). Experience in construction and maintenance of fish passes show that salmon-criteria are not adequate for flat-land rivers and non-sport fishes. Consequently, over the last decade, design criteria have changed to take requirements of target species into account. Extrapolation of these concepts to rivers in the Southern Hemisphere with different hydrological conditions and fish community composition is not straight forward. This review focuses on requirements for an adequate hydraulic design of passes for non-sport fish species bodied (<15 cm) threatened by small hydropower dams (with a typical head of 3–5 m). First, fragmentation of fish populations due to river obstructions that impede longitudinal movements is introduced from the perspective of environmental sustainability, taking the Chilean indigenous freshwater fish species as a study case. Subsequently, relevant properties of fish passages are reviewed, and experimental issues for maintenance in captivity and determination of swimming abilities in the laboratory are presented. Following dimensional considerations controlling scales for an adequate hydraulic design of fish passes, involving fluid, flow, fish, and pass properties are discussed. Finally, we postulate that successful passage design should consider habitat connectivity as the key concept for preservation of this highly threatened native fish fauna.

[1]  K. Aarestrup,et al.  Evidence for non‐random spatial positioning of migrating smolts (Salmonidae) in a small lowland stream , 2007 .

[2]  C Katopodis,et al.  Fishway studies for the Lower Churchill River Water-Level Enhancement Project in Manitoba , 1999 .

[3]  J. R. Brett The Respiratory Metabolism and Swimming Performance of Young Sockeye Salmon , 1964 .

[4]  M. Odeh,et al.  Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish. , 2001 .

[5]  Steven Weiss,et al.  Conceptual Guidelines for Nature-like Bypass Channels , 1998 .

[6]  Breton Anex-Dit-Chenaud,et al.  Flow in nature-like fishway and its relation to fish behaviour , 2013 .

[7]  Charles H. Clay,et al.  Design of Fishways and Other Fish Facilities , 1995 .

[8]  R. McDowall Freshwater fishes and plate tectonics in the southwest Pacific , 1980 .

[9]  Oscar Parra,et al.  Downstream environmental effects of dam operations: Changes in habitat quality for native fish species , 2011 .

[10]  Paul W. Webb,et al.  Do Brown Trout Choose Locations with Reduced Turbulence , 2006 .

[11]  A. Stehr,et al.  THE SOLAR‐TO‐STREAM POWER RATIO: A DIMENSIONLESS NUMBER EXPLAINING DIEL FLUCTUATIONS OF TEMPERATURE IN MESOSCALE RIVERS , 2013 .

[12]  Christos Katopodis,et al.  Introduction to Fishway Design , 1991 .

[13]  D. Morgan,et al.  Restoring ecological connectivity in the Margaret River: Western Australia's first rock-ramp fishways , 2007 .

[14]  Sunardi,et al.  Foraging of a Small Planktivore (Pseudorasbora parva: Cyprinidae) and its Behavioral Flexibility in an Artificial Stream , 2005, Hydrobiologia.

[15]  Campos C. Hugo Migration of galaxias maculatus (Jenyns) (galaxiidae, pisces) in Valdivia Estuary, Chile , 1973, Hydrobiologia.

[16]  E. Habit,et al.  Bioenergetic models of the threatened darter Percilia irwini , 2012 .

[17]  F. G. Arratia Preferencias de habitat de peces siluriformes de aguas continentales de Chile (Fam. Diplomystidae y Trichomycteridae). , 1983 .

[18]  C. Breder The locomotion of fishes , 1926 .

[19]  D. S. Pavlov,et al.  The Effects of Flow Turbulence on the Behavior and Distribution of Fish , 2000 .

[20]  Alejandra Oyanedel,et al.  Patrones de desplazamiento de peces nativos en el Río San Pedro (cuenca del Río Valdivia, Chile) , 2012 .

[21]  K. Walker,et al.  Behaviour of two small pelagic and demersal fish species in diverse hydraulic environments , 2012 .

[22]  M. Larinier Les passes à ralentisseurs , 1992 .

[23]  I. Vila,et al.  Estado de conocimiento de los peces dulceacuícolas de Chile , 2006 .

[24]  H. López,et al.  Fishes of southern South America: a story driven by temperature , 2009, Fish Physiology and Biochemistry.

[25]  E. Poulin,et al.  The genus Basilichthys (Teleostei: Atherinopsidae) revisited along its Chilean distribution range (21° to 40° S) using variation in morphologyand mtDNA , 2012 .

[26]  David Gilvear,et al.  Investigating a major assumption of predictive instream habitat models: is water velocity preference of juvenile Atlantic salmon independent of discharge? , 2001 .

[27]  Vladimir Nikora,et al.  Effects of fish size, time‐to‐fatigue and turbulence on swimming performance: a case study of Galaxias maculatus , 2003 .

[28]  A. Mcintosh,et al.  Facilitation of upstream passage for juveniles of a weakly swimming migratory galaxiid , 2012 .

[29]  C. Baker,et al.  Upstream passage of inanga Galaxias maculatus and redfin bullies Gobiomorphus huttoni over artificial ramps , 2006 .

[30]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[31]  D. Soto,et al.  Evidence of Interactive Segregation between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile , 2009 .

[32]  Michael Sfakiotakis,et al.  Review of fish swimming modes for aquatic locomotion , 1999 .

[33]  M. Larinier FISH PASSAGE THROUGH CULVERTS, ROCK WEIRS AND ESTUARINE OBSTRUCTIONS , 2002 .

[34]  V. Cussac,et al.  Annual dynamics variation of a landlocked Galaxias maculatus (Jenyns 1842) population in a Northern Patagonian river: occurrence of juvenile upstream migration , 2007 .

[35]  I. Jowett In‐stream habitat suitability criteria for feeding inanga (Galaxias maculatus) , 2002 .

[36]  Jorge Gonzalez,et al.  Threatened fishes of the world: Diplomystes camposensis Arratia, 1987 (Diplomystidae) , 2009, Environmental Biology of Fishes.

[37]  Pedro F. Victoriano,et al.  Patrones idiosincráticos de diversidad genética de peces nativos del Río San Pedro (Cuenca del Río Valdivia), un sistema de la región glaciada del sur de Chile , 2012 .

[38]  A. I. Lupandin Effect of Flow Turbulence on Swimming Speed of Fish , 2005, Biology Bulletin.

[39]  A. Ficke,et al.  The Swimming and Jumping Ability of Three Small Great Plains Fishes: Implications for Fishway Design , 2011 .

[40]  I. G. Cowx,et al.  Rehabilitation of rivers for fish. A study undertaken by the European Inland Fisheries Advisory Commission of FAO , 1998 .

[41]  Fao Dvwk Fish Passes: Design, Dimensions, and Monitoring , 2002 .

[42]  Ian G. Cowx,et al.  Rehabilitation of rivers for fish , 1998 .

[43]  Michel Larinier,et al.  Fish passage experience at small-scale hydro-electric power plants in France , 2008, Hydrobiologia.

[44]  Paul S. Kemp,et al.  Advancing provision of multi-species fish passage: Behaviour of adult European eel (Anguilla anguilla) and brown trout (Salmo trutta) in response to accelerating flow , 2011 .

[45]  C. Holmquist-Johnson,et al.  Rock ramp design guidelines , 2007 .

[46]  J S Jia,et al.  Fishways: Biological basis, design criteria and monitoring - Foreward , 2002 .

[47]  Fish passage guidelines for the Auckland Region , 2000 .

[48]  M. Belk,et al.  Threatened fishes of the world: Percilia irwini (Eigenmann 1927) (Perciliidae) , 2007, Environmental Biology of Fishes.

[49]  N Rajaratnam,et al.  Hydraulics of culvert fishways II: slotted-weir culvert fishways , 1989 .

[50]  V. Ruiz,et al.  EL PUYE GALAXIAS GLOBICEPS EIGENMANN 1927 (OSTEICHTHYES: GALAXIIDAE):: ¿UNA ESPECIE EN PELIGRO DE EXTINCION? , 2002 .

[51]  A. Stehr,et al.  Régimen térmico de ríos: desarrollo, verificación y aplicación de un modelo numérico , 2012 .

[52]  F. Encina,et al.  Cultivation of whitebait (Galaxias maculatus) in Chile , 2008 .

[53]  S. Larned,et al.  Fish swimming speed variability at constant flow: Galaxias maculatus , 2007 .

[54]  I. Vila,et al.  Trophic niche overlap between two Chilean endemic species of Trichomycterus (Teleostei: Siluriformes) , 2007 .

[55]  B. Dyer Systematic review and biogeography of the freshwater fishes of Chile , 2000 .

[56]  R. Young,et al.  Factors affecting juvenile galaxiid fish passage at culverts , 2011 .

[57]  M. Lucas,et al.  Extreme inefficiency of two conventional, technical fishways used by European river lamprey (Lampetra fluviatilis) , 2013 .