Adaptive space–time finite element methods for the wave equation on unbounded domains

Abstract Comprehensive adaptive procedures with efficient solution algorithms for the time-discontinuous Galerkin space–time finite element method (DGFEM) including high-order accurate nonreflecting boundary conditions (NRBC) for unbounded wave problems are developed. Sparse multi-level iterative schemes based on the Gauss–Seidel method are developed to solve the resulting fully-discrete system equations for the interior hyperbolic equations coupled with the first-order temporal equations associated with auxiliary functions in the NRBC. Due to the local nature of wave propagation, the iterative strategy requires only a few iterations per time step to resolve the solution to high accuracy. Further cost savings are obtained by diagonalizing the mass and boundary damping matrices. In this case the algebraic structure decouples the diagonal block matrices giving rise to an explicit multi-corrector method. An h-adaptive space–time strategy is employed based on the Zienkiewicz–Zhu spatial error estimate using the superconvergent patch recovery (SPR) technique, together with a temporal error estimate arising from the discontinuous jump between time steps of both the interior field solutions and auxiliary boundary functions. For accurate data transfer between meshes, a new enhanced interpolation (EI) method is developed and compared to standard interpolation and projection. Numerical studies of transient radiation and scattering demonstrate the accuracy, reliability and efficiency gained from the adaptive strategy.

[1]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[2]  P. Pinsky,et al.  A space-time finite element method for structural acoustics in infinite domains part 2: Exact time-dependent non-reflecting boundary conditions , 1996 .

[3]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[4]  David R. Owen,et al.  Transfer operators for evolving meshes in small strain elasto-placticity , 1996 .

[5]  Nils-Erik Wiberg,et al.  Adaptive finite element procedures for linear and non‐linear dynamics , 1999 .

[6]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[7]  T.-Y. Wu,et al.  An improved predictor/multi-corrector algorithm for a time-discontinuous Galerkin finite element method in structural dynamics , 2000 .

[8]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[9]  P. Hansbo A free-Lagrange finite element method using space-time elements , 2000 .

[10]  Time-Discontinuous Stabilized Space-Time Finite Elements for Timoshenko Beams , 2001 .

[11]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[12]  O. C. Zienkiewicz,et al.  Automatic Mesh Generation , 2005 .

[13]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[14]  Thomas J. R. Hughes,et al.  Fast projection algorithm for unstructured meshes , 1992 .

[15]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[16]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[17]  John L. Tassoulas,et al.  CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION , 2000 .

[18]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .

[19]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[20]  Ekkehard Ramm,et al.  Local and global error estimations in linear structural dynamics , 2000 .

[21]  Peter M. Pinsky,et al.  A Space-Time Finite Element Method for the Exterior Acoustics Problem , 1996 .

[22]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[23]  Rainald Löhner,et al.  Adaptive remeshing for transient problems , 1989 .

[24]  K. Balasubramaniam,et al.  Adaptive hp-finite element for transient analysis , 1994 .

[25]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[26]  C. C. Pain,et al.  An automatic adaptive meshing technique for Delaunay triangulations , 1998 .

[27]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[28]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[29]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[30]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[31]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[32]  Y. Kallinderis,et al.  Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes , 1993 .

[33]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[34]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[35]  N. Weatherill Delaunay triangulation in computational fluid dynamics , 1992 .

[36]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[37]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Time-Dependent Scattering , 1996 .

[38]  R. Kleinman,et al.  Second International Conference on Mathematical and Numerical Aspects of Wave Propagation , 1993 .

[39]  P. Pinsky,et al.  A SPACE–TIME FINITE ELEMENT METHOD FOR THE EXTERIOR STRUCTURAL ACOUSTICS PROBLEM: TIME‐DEPENDENT RADIATION BOUNDARY CONDITIONS IN TWO SPACE DIMENSIONS , 1996 .

[40]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[41]  Miloslav Feistauer,et al.  On one approach to a posteriori error estimates for evolution problems solved by the method of lines , 2001, Numerische Mathematik.

[42]  N. Ricker Transient waves in visco-elastic media , 1977 .

[43]  L. Thompson,et al.  Computation of far-field solutions based on exact nonreflecting boundary conditions for the time-dependent wave equation , 2000 .

[44]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[45]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[46]  Peter M. Pinsky,et al.  A space-time finite element method for structural acoustics in infinite domains part 1: Formulation, stability and convergence , 1996 .

[47]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[48]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[49]  Nils-Erik Wiberg,et al.  STRUCTURAL DYNAMIC ANALYSIS BY A TIME‐DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD , 1996 .

[50]  N. Wiberg,et al.  Error estimation and adaptivity in elastodynamics , 1992 .

[51]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[52]  W. Bangerth,et al.  Finite element method for time dependent scattering: Nonreflecting boundary condition, adaptivity, and energy decay , 2004 .

[53]  Lonny L. Thompson,et al.  Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains , 2001 .

[54]  Miloš Zlámal,et al.  Superconvergence and reduced integration in the finite element method , 1978 .

[55]  André Garon,et al.  A new stable space–time formulation for two‐dimensional and three‐dimensional incompressible viscous flow , 2001 .

[56]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[57]  L. Thompson,et al.  Adaptive Time-Discontinuous Galerkin Methods for Acoustic Scattering in Unbounded Domains , 2002 .

[58]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[59]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[60]  Satya N. Atluri,et al.  Computational nonlinear mechanics in aerospace engineering , 1992 .

[61]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .

[62]  Eugenio Oñate,et al.  A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .

[63]  O. C. Zienkiewicz,et al.  Superconvergence and the superconvergent patch recovery , 1995 .

[64]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[65]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[66]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[67]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[68]  Nils-Erik Wiberg,et al.  A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis , 1994 .

[69]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[70]  Graham F. Carey,et al.  Superconvergent derivatives: A Taylor series analysis , 1989 .

[71]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[72]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[73]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[74]  Lonny L. Thompson,et al.  Accurate radiation boundary conditions for the time‐dependent wave equation on unbounded domains , 2000 .

[75]  D. Perić,et al.  A time-adaptive space-time finite element method for incompressible Lagrangian flows with free surfaces: computational issues , 2000 .

[76]  SPURIOUS RESONANCES IN NUMERICAL TIME INTEGRATION METHODS FOR LINEAR DYNAMICS , 2000 .

[77]  Leszek Demkowicz,et al.  Adaptive finite element methods for hyperbolic systems with application to transient acoustics , 1991 .

[78]  J. Tinsley Oden,et al.  Computational techniques for adaptive hp finite element methods , 1997 .

[79]  G. Hulbert Time finite element methods for structural dynamics , 1992 .

[80]  Mark S. Shephard,et al.  Automated adaptive time-discontinuous finite element method for unsteady compressible airfoil aerodynamics , 1994 .

[81]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[82]  Local Space-Time Adaptive Discontinuous Galerkin Finite Element Methods for Time-Dependent Waves , 2003 .

[83]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[84]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[85]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[86]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[87]  Nils-Erik Wiberg,et al.  Spatial mesh adaptation in semidiscrete finite element analysis of linear elastodynamic problems , 1992 .

[88]  Ivo Babuška,et al.  A MODEL STUDY OF THE QUALITY OF A POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY , 1997 .

[89]  Pierre Ladevèze,et al.  An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .