PDT-induced apoptosis: investigations using two malignant brain tumor models

PDT included necrosis in brain tissue and an intracranial tumor has been quantified for various photosensitizers, and it has been shown to be dependent on the sub-cellular localization of these photosensitizers. In quantifying non- necrotic biological endpoints, such as PDT induced apoptosis, the expression and translation of apoptosis inhibiting or promoting genes is of considerable importance. We studied the susceptibility of two glioblastoma cell lines to under go apoptotic cell death following photodynamic treatment with either Photofrin or delta-aminolevulinic acid (delta) ALA) in vivo. Murine 9L Gliosarcoma cells or human U87 Glioblastoma cells were implanted into the cortex of rats, and following 12 or 14 days of growth respectively, subjected to either Photofrin-mediated PDT or ALA-mediated PDT. 9L gliosarcoma cells express the phosphatase Tensin homologue (PTEN) tumor suppressor gene while in U87 cells PTEN is mutated. Differences in the Photofrin mediated PDT induced apoptosis were noted between the two different cell lines in vivo, suggesting that Photofrin mediated PDT may be dependent on apoptotic pathways. ALA induced PPIX showed higher selectivity towards 9L than Photofrin mediated PDT. These studies suggests that PDT could be used as an effective treatment for intracranial neoplasm. Endogenous photosensitizers such as ALA could be used to promote apoptosis in tumor cells due to PDT treatment and thereby minimize the extent of necrotic infarction in the surrounding normal brain.

[1]  L. Lilge,et al.  Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers. , 1998, Journal of clinical laser medicine & surgery.

[2]  Nancy L Oleinick,et al.  The role of apoptosis in response to photodynamic therapy: what, where, why, and how , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[3]  I. Pass,et al.  Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, PTEN. , 2001, Biochemical Society transactions.

[4]  C. Bortner,et al.  The role of DNA fragmentation in apoptosis. , 1995, Trends in cell biology.

[5]  L. Lilge,et al.  Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue , 2000, British Journal of Cancer.

[6]  David Kessel,et al.  Treatment parameters affecting the response of normal brain to photodynamic therapy , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[7]  J. Cheville,et al.  PTEN Induces Chemosensitivity in PTEN-mutated Prostate Cancer Cells by Suppression of Bcl-2 Expression* , 2001, The Journal of Biological Chemistry.