Understanding the cell in terms of structure and function: insights from structural genomics.

Structural genomics programs are only now moving into the large-scale production phase, yet have already produced around 2000 protein structures. Through a widespread if not exclusive emphasis on structural novelty, our knowledge of the protein fold universe is improving rapidly. With this information comes the challenge of structure-based function annotation for the many target proteins about which little or nothing is known. Recent years have therefore seen the emergence of impressively diverse bioinformatics approaches to predict the function of a protein structure. Attention is now turning to means of combining these predictions with information from various other sources.

[1]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[2]  A. Godzik,et al.  The interplay of fold recognition and experimental structure determination in structural genomics. , 2004, Current opinion in structural biology.

[3]  Michael Y. Galperin,et al.  PilZ domain is part of the bacterial c-di-GMP binding protein , 2006, Bioinform..

[4]  Wim G J Hol,et al.  Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. , 2006, Molecular and biochemical parasitology.

[5]  Janet M. Thornton,et al.  HTHquery: a method for detecting DNA-binding proteins with a helix-turn-helix structural motif , 2005, Bioinform..

[6]  Jie Liang,et al.  Protein surface analysis for function annotation in high‐throughput structural genomics pipeline , 2005, Protein science : a publication of the Protein Society.

[7]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[8]  Rebecca Page,et al.  Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. , 2004, Journal of molecular biology.

[9]  J. Escalante‐Semerena,et al.  The cobZ Gene of Methanosarcina mazei Gö1 Encodes the Nonorthologous Replacement of the α-Ribazole-5′-Phosphate Phosphatase (CobC) Enzyme of Salmonella enterica , 2006, Journal of bacteriology.

[10]  B. Jap,et al.  Structural genomics of membrane proteins , 2004, Genome Biology.

[11]  J. Thornton,et al.  Predicting protein function from sequence and structural data. , 2005, Current opinion in structural biology.

[12]  L. J. Perry,et al.  The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles , 2005, PLoS biology.

[13]  Mark Gerstein,et al.  The Database of Macromolecular Motions: new features added at the decade mark , 2005, Nucleic Acids Res..

[14]  Manfred Burghammer,et al.  Protein crystallography microdiffraction. , 2005, Current opinion in structural biology.

[15]  J. S. Sodhi,et al.  Predicting metal-binding site residues in low-resolution structural models. , 2004, Journal of molecular biology.

[16]  Ming-Ming Zhou,et al.  Structure and chromosomal DNA binding of the SWIRM domain , 2005, Nature Structural &Molecular Biology.

[17]  Ying Wei,et al.  Prediction of active sites for protein structures from computed chemical properties , 2005, ISMB.

[18]  Fei Philip Gao,et al.  Recent developments in membrane-protein structural genomics , 2006, Genome Biology.

[19]  D. Rees,et al.  JAMM: A Metalloprotease-Like Zinc Site in the Proteasome and Signalosome , 2003, PLoS biology.

[20]  Sonia Longhi,et al.  Assessing protein disorder and induced folding , 2005, Proteins.

[21]  K. Shinozaki,et al.  Solution Structure of an Arabidopsis WRKY DNA Binding Domainw⃞ , 2005, The Plant Cell Online.

[22]  A. Wlodawer Giving credit where credit is due , 2005, Nature Structural &Molecular Biology.

[23]  Tim J. P. Hubbard,et al.  SCOP database in 2004: refinements integrate structure and sequence family data , 2004, Nucleic Acids Res..

[24]  Janet M. Thornton,et al.  The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data , 2004, Nucleic Acids Res..

[25]  Dong Hae Shin,et al.  Structure-based functional inference in structural genomics , 2004, Journal of Structural and Functional Genomics.

[26]  Lei Wang,et al.  Accuracy of structure-derived properties in simple comparative models of protein structures , 2005, Nucleic acids research.

[27]  Janet M. Thornton,et al.  ProFunc: a server for predicting protein function from 3D structure , 2005, Nucleic Acids Res..

[28]  J. Janin,et al.  Crystal structure of the YML079w protein from Saccharomyces cerevisiae reveals a new sequence family of the jelly‐roll fold , 2005, Protein science : a publication of the Protein Society.

[29]  Marcin P Joachimiak,et al.  JEvTrace: refinement and variations of the evolutionary trace in JAVA , 2002, Genome Biology.

[30]  A. McPherson Protein crystallization in the structural genomics era , 2004, Journal of Structural and Functional Genomics.

[31]  D. Eisenberg,et al.  Inference of protein function from protein structure. , 2005, Structure.

[32]  John D. Westbrook,et al.  TargetDB: a target registration database for structural genomics projects , 2004, Bioinform..

[33]  Janet M Thornton,et al.  Protein function prediction using local 3D templates. , 2005, Journal of molecular biology.

[34]  Robert B Russell,et al.  Finding functional sites in structural genomics proteins. , 2004, Structure.

[35]  E. Koonin,et al.  Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. , 2003, Current opinion in chemical biology.

[36]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[37]  Gabriele Ausiello,et al.  Functional annotation by identification of local surface similarities: a novel tool for structural genomics , 2005, BMC Bioinformatics.

[38]  Russell L. Marsden,et al.  Progress of structural genomics initiatives: an analysis of solved target structures. , 2005, Journal of molecular biology.

[39]  D. Slotboom,et al.  Functional expression of eukaryotic membrane proteins in Lactococcus lactis , 2005, Protein science : a publication of the Protein Society.

[40]  J. Thornton,et al.  A method for localizing ligand binding pockets in protein structures , 2005, Proteins.

[41]  Martin Phillips,et al.  Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Philip E. Bourne,et al.  The RCSB PDB information portal for structural genomics , 2005, Nucleic Acids Res..

[43]  Gil Amitai,et al.  Network analysis of protein structures identifies functional residues. , 2004, Journal of molecular biology.

[44]  Jeffrey Skolnick,et al.  Efficient prediction of nucleic acid binding function from low-resolution protein structures. , 2006, Journal of molecular biology.

[45]  D. Hanson,et al.  Towards higher-throughput membrane protein production for structural genomics initiatives , 2004, Journal of Structural and Functional Genomics.

[46]  G. Gilliland,et al.  Crystal Structure of the YchF Protein Reveals Binding Sites for GTP and Nucleic Acid , 2003, Journal of bacteriology.

[47]  Sung-Hou Kim,et al.  Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Philip E. Bourne,et al.  Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models , 2005, PLoS Comput. Biol..

[49]  Adam Godzik,et al.  Structural genomics of thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability. , 2005, Structure.

[50]  P. Nordlund,et al.  An efficient strategy for high‐throughput expression screening of recombinant integral membrane proteins , 2005, Protein science : a publication of the Protein Society.

[51]  Michael Sullivan,et al.  Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. , 2005, Structure.

[52]  Janet M. Thornton,et al.  Automatic inference of protein quaternary structure from crystals , 2003 .

[53]  C Sander,et al.  Mapping the Protein Universe , 1996, Science.

[54]  Michael Y. Galperin,et al.  The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. , 2004, Journal of molecular biology.

[55]  S. Brenner,et al.  Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches , 2004, Proteins.

[56]  S. Brenner A tour of structural genomics , 2001, Nature Reviews Genetics.

[57]  Mark Gerstein,et al.  Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. , 2004, Journal of molecular biology.

[58]  Steven E Brenner,et al.  The Impact of Structural Genomics: Expectations and Outcomes , 2005, Science.

[59]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[60]  James E. Bray,et al.  High-throughput production of prokaryotic membrane proteins , 2005, Journal of Structural and Functional Genomics.