The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur

Abstract Hubble Space Telescope observations of Uranus- and Neptune-crossing object (65489) Ceto/Phorcys (provisionally designated 2003 FX128) reveal it to be a close binary system. The mutual orbit has a period of 9.554 ± 0.011 days and a semimajor axis of 1840 ± 48 km . These values enable computation of a system mass of ( 5.41 ± 0.42 ) × 10 18 kg . Spitzer Space Telescope observations of thermal emission at 24 and 70 μm are combined with visible photometry to constrain the system's effective radius ( 109 −11 +10 km ) and geometric albedo ( 0.084 −0.014 +0.021 ) . We estimate the average bulk density to be 1.37 −0.32 +0.66 g cm −3 , consistent with ice plus rocky and/or carbonaceous materials. This density contrasts with lower densities recently measured with the same technique for three other comparably-sized outer Solar System binaries (617) Patroclus, (26308) 1998 SM165, and (47171) 1999 TC36, and is closer to the density of the saturnian irregular satellite Phoebe. The mutual orbit of Ceto and Phorcys is nearly circular, with an eccentricity ⩽0.015. This observation is consistent with calculations suggesting that the system should tidally evolve on a timescale shorter than the age of the Solar System.

[1]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[2]  N. W. Evans,et al.  Simulations of the population of Centaurs – I. The bulk statistics , 2004, astro-ph/0407400.

[3]  M. Polińska,et al.  Figure of the double Asteroid 90 Antiope from adaptive optics and lightcurve observations , 2007 .

[4]  W. Durham,et al.  Cold compaction of water ice , 2005 .

[5]  JOHN S. Lewis,et al.  Mass-radius relationships in icy satellites , 1979 .

[6]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[7]  J. Lunine,et al.  Origins of outer-planet satellites , 1993 .

[8]  B. G. Marsden,et al.  The discovery and orbit of /2060/ Chiron , 1979 .

[9]  J. Beeman,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. III. An Asteroid‐based Calibration of MIPS at 160 μm , 2007, 0707.2103.

[10]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[11]  Time-resolved photometry of kuiper belt objects: rotations, shapes and phase functions , 2002, astro-ph/0205392.

[12]  M. F. A'Hearn,et al.  Deep Impact: excavating comet 9P/Tempel 1 , 2005, Proceedings of the International Astronomical Union.

[13]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[14]  D. Jewitt,et al.  Water in the Small Bodies of the Solar System , 2007 .

[15]  S. Tremaine,et al.  The Origin of Short-Period Comets , 1988 .

[16]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[17]  D. Trilling Tidal Constraints on the Masses of Extrasolar Planets , 2000 .

[18]  K. Muinonen,et al.  Orbit computation for transneptunian objects , 2003 .

[19]  J. Richardson,et al.  Proton Irradiation of Centaur, Kuiper Belt, and Oort Cloud Objects at Plasma to Cosmic Ray Energy , 2003 .

[20]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[21]  L. Wasserman,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. I. Description of Methods and Initial Results , 2002 .

[22]  Light Curves of 20-100 km Kuiper Belt Objects Using the Hubble Space Telescope* , 2005, astro-ph/0510454.

[23]  D. C. Hamilton,et al.  Voyager 1 in the Foreshock, Termination Shock, and Heliosheath , 2005, Science.

[24]  D. Jewitt,et al.  The Mauna Kea-Cerro-Tololo (MKCT) Kuiper Belt and Centaur Survey , 1996 .

[25]  A. Doressoundiram,et al.  Reopening the TNOs color controversy: Centaurs bimodality and TNOs unimodality , 2003 .

[26]  C. de Bergh,et al.  Results from the Eso Large Program on Transneptunian Objects and Centaurs , 2003 .

[27]  J. Elliot,et al.  The Frequency of Binary Kuiper Belt Objects , 2006 .

[28]  K. Noll,et al.  Detection of Six Trans-Neptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005, astro-ph/0510130.

[29]  J. Petit,et al.  KBO binaries: how numerous were they? , 2004 .

[30]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[31]  Karri Muinonen,et al.  Statistical Ranging of Asteroid Orbits , 2001 .

[32]  A. Kouchi,et al.  Amorphous Water Ice , 1998 .

[33]  William H. Press,et al.  Numerical recipes in C , 2002 .

[34]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[35]  B. Davidsson,et al.  Non-gravitational force modeling of Comet 81P/Wild 2 : II. Rotational evolution , 2007 .

[36]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[37]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[38]  J. W. Stout,et al.  The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273°K. , 1936 .

[39]  Joseph A. Burns,et al.  Some background about satellites , 1986 .

[40]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[41]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[42]  D. Osip,et al.  The Orbit and Albedo of Trans-Neptunian Binary (58534) 1997 CQ29 , 2004, astro-ph/0407362.

[43]  Jonathan I. Lunine,et al.  Saturn's moon Phoebe as a captured body from the outer Solar System , 2005, Nature.

[44]  Jean-Luc Margot,et al.  Binaries in the Kuiper Belt , 2007, astro-ph/0703134.

[45]  K. Keil,et al.  Protostars and Planets V , 2007 .

[46]  Wm. A. Wheaton,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging , 2007, 0704.2196.

[47]  Mark Clampin,et al.  Advanced camera for the Hubble Space Telescope , 1996, Astronomical Telescopes and Instrumentation.

[48]  F. Poulet,et al.  Photometric study of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles , 2005 .

[49]  H. F. Levison,et al.  Discovery of a binary Centaur , 2006 .

[50]  M. Duncan,et al.  A disk of scattered icy objects and the origin of Jupiter-family comets. , 1997, Science.

[51]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2000, astro-ph/0507614.

[52]  J. Lunine,et al.  Protostars and planets III , 1993 .

[53]  David L. Rabinowitz,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2006 .

[54]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[55]  M. W. Buie,et al.  Orbits and Photometry of Pluto’s Satellites: Charon, S/2005 P1, and S/2005 P2 , 2005, astro-ph/0512491.

[56]  G. Rieke,et al.  The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36 , 2006, astro-ph/0602316.

[57]  C. de Bergh,et al.  Solar system ices , 1998 .

[58]  otros,et al.  Absolute calibration and characterization of the multiband imaging photometer for Spitzer. I. The stellar calibrator sample and the 24 μm calibration , 2007 .

[59]  Re'em Sari,et al.  Formation of Kuiper-belt binaries by dynamical friction and three-body encounters , 2002, Nature.

[60]  D. Yeomans Small bodies of the Solar System , 2000, Nature.

[61]  K. Kossacki,et al.  Evolution of porosity in small icy bodies , 2000 .

[62]  Matthew J. Holman,et al.  A possible long-lived belt of objects between Uranus and Neptune , 1997, Nature.

[63]  M. Brown,et al.  The largest Kuiper belt objects , 2008 .

[64]  Steven Soter,et al.  Q in the solar system , 1966 .

[65]  Tilman Spohn,et al.  Thermal histories, compositions and internal structures of the moons of the solar system , 1986 .

[66]  R. Rand,et al.  Synchronous Locking of Tidally Evolving Satellites , 1996 .

[67]  Alain Doressoundiram,et al.  The binary Kuiper-belt object 1998 WW31 , 2002, Nature.

[68]  C. F. Yoder Tidal rigidity of Phobos , 1982 .

[69]  B. Davidsson,et al.  Non-gravitational force modeling of Comet 81P/Wild 2: I. A nucleus bulk density estimate , 2006 .

[70]  Daniel D. Durda,et al.  Collision Rates in the Present-Day Kuiper Belt and Centaur Regions: Applications to Surface Activation and Modification on Comets, Kuiper Belt Objects, Centaurs, and Pluto–Charon , 1999, astro-ph/9912400.

[71]  J. Krist The Tiny Tim User’s Guide , 2004 .

[72]  P. Descamps Orbit of an Astrometric Binary System , 2005 .

[73]  Stephen C. Tegler,et al.  Color Patterns in the Kuiper Belt: A Possible Primordial Origin , 2003 .

[74]  David Jewitt,et al.  Densities of Solar System Objects from Their Rotational Light Curves , 2007 .