Contraction analysis of non-linear distributed systems

Contraction theory is a comparatively recent dynamic analysis and non-linear control system design tool based on an exact differential analysis of convergence. This paper extends contraction theory to local and global stability analysis of important classes of non-linear distributed dynamics, such as convection-diffusion-reaction processes, Lagrangian and Hamilton–Jacobi dynamics, and optimal controllers and observers. By contrast with stability proofs based on energy dissipation, stability and convergence can be determined for energy-based systems excited by time-varying inputs. The Hamilton–Jacobi–Bellman controller and a similar optimal non-linear observer design are studied based on explicitly computable conditions on the convexity of the cost function. These stability conditions extend the well-known conditions on controllability and observability Grammians for linear time-varying systems, without requiring the unknown transition matrix of the underlying differential dynamics.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[3]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[4]  G. Seifert,et al.  ON STABILITY IN THE LARGE FOR PERIODIC SOLUTION OF DIFFERENTIAL SYSTEMS , 1958 .

[5]  Z. Mikołajska Sur la stabilité asymptotique des solutions d'un système d'équations différentielles , 1959 .

[6]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[7]  P. Hartman Ordinary Differential Equations , 1965 .

[8]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[9]  Tosio Kato Perturbation theory for linear operators , 1966 .

[10]  J. Christensen Doctoral thesis , 1970 .

[11]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[12]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[13]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[14]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[15]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[17]  Thomas Kailath,et al.  Linear Systems , 1980 .

[18]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[19]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.

[20]  G. Leonov,et al.  Frequency Methods in Oscillation Theory , 1995 .

[21]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[22]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[23]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[24]  S. Monaco,et al.  Asymptotic properties of incrementally stable systems , 1996, IEEE Trans. Autom. Control..

[25]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[26]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[27]  M. Krstić,et al.  Output-feedback control of stochastic nonlinear systems : Stabilization, disturbance attenuation and adaptation , 1999 .

[28]  Winfried Lohmiller,et al.  On the stability of nonlinear reaction-diffusion processes , 1999, 1999 European Control Conference (ECC).

[29]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[30]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[31]  Winfried Lohmiller,et al.  Stability analysis and observer design for nonlinear diffusion processes , 1999 .

[32]  Jean-Jacques E. Slotine,et al.  Global Convergence Rates of Nonlinear Diffusion for Time-Varying Images , 1999, Scale-Space.

[33]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[34]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[35]  Olav Egeland,et al.  Time and spatial discretization methods that preserve passivity properties for systems described by partial differential equations , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[36]  Jean-Jacques E. Slotine,et al.  Modularity, evolution, and the binding problem: a view from stability theory , 2001, Neural Networks.

[37]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[38]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[39]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[40]  Jonathan de Halleux,et al.  Boundary feedback control in networks of open channels , 2003, Autom..

[41]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[42]  Tu Due Nguyen,et al.  Observer design for a towed seismic cable , 2004, Proceedings of the 2004 American Control Conference.

[43]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[44]  J. Opderbecke,et al.  Underwater vehicle trajectory estimation using contracting PDE-based observers , 2004, Proceedings of the 2004 American Control Conference.

[45]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[46]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[47]  Tomaso A. Poggio,et al.  Statistical Learning Theory: A Primer , 2000, International Journal of Computer Vision.

[48]  T. Poggio,et al.  The Mathematics of Learning: Dealing with Data , 2005, 2005 International Conference on Neural Networks and Brain.

[49]  Yong Zhao,et al.  Discrete nonlinear observers for inertial navigation , 2005, Syst. Control. Lett..