From Surface Science to Nanotechnology

This overview sketches the historical development of surface science through nanoscience toward nanotechnology. It spans about 50 years of evolution and emphasizes the multidisciplinary nature of this field, as well as its closely-knit interactions with technology, scientific disciplines, phenomena and techniques. A series of examples is given, drawn mainly from work performed in Berkeley, to highlight various stages in the field: surfaces, interfaces, clusters, thin films, superlattices, nanostructures and “bionano”.

[1]  M. Hove,et al.  Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations , 1997 .

[2]  E. Rotenberg,et al.  Atomic-scale structure of the fivefold surface of an AlPdMn quasicrystal: A quantitative x-ray photoelectron diffraction analysis , 2004 .

[3]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[4]  D. F. Ogletree,et al.  Chemisorption and dissociation of O2 on Pd(111) studied by STM , 2003 .

[5]  Jingbo Li,et al.  Shape Effects on Electronic States of Nanocrystals. , 2003, Nano letters.

[6]  SPECTROSCOPY OF SINGLE CDSE NANOCRYSTALLITES , 1999 .

[7]  Gabor A. Somorjai,et al.  CO Poisoning of Ethylene Hydrogenation over Pt Catalysts: A Comparison of Pt(111) Single Crystal and Pt Nanoparticle Activities , 2003 .

[8]  M. Hove,et al.  Identification of adatoms on metal surfaces by STM : experiment and theory , 1998 .

[9]  Shimon Weiss,et al.  Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling , 2001 .

[10]  D. F. Ogletree,et al.  Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies , 2003, Nature.

[11]  E. Rotenberg,et al.  Quantization condition of quantum-well states in Cu/Co(001) , 2003 .

[12]  D. F. Ogletree,et al.  Acetylene structure and dynamics on Pd(111) , 1998 .

[13]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[14]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[15]  M. Hove,et al.  Structural Analysis of the Fivefold Symmetric Surface of the Al70Pd21Mn9 Quasicrystal by Low Energy Electron Diffraction , 1997 .

[16]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[17]  G. Somorjai,et al.  Model catalysts fabricated by electron beam lithography: AFM and TPD surface studies and hydrogenation/dehydrogenation of cyclohexene + H2 on a Pt nanoparticle array supported by silica , 2000 .

[18]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[19]  R. Ritchie,et al.  Carbon nanotubes as nanoscale mass conveyors , 2004, Nature.

[20]  A. Zettl,et al.  Localization and nonlinear resistance in telescopically extended nanotubes. , 2004, Physical review letters.

[21]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[22]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[23]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[24]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.