Quantitative assessment of mineral resources by combining geostatistics and fractal methods in the Tongshan porphyry Cu deposit (China)

Abstract Three-dimensional (3D) geological, geostatistical, and fractal/multifractal modeling are combined for the identification of new exploration targets in the Tongshan porphyry Cu deposit (China): (1) A 3D geological model of the deposit includes the strata, faults, altered rocks, intrusive bodies, and three orebodies using geological map, cross-sections, borehole dataset, and magnetic inversion; (2) geostatistical analysis involves omnidirectional and vertical semi-variogram calculations of the orebody, ordinary kriging interpolation of the orebody and 3D trend modeling using the assay data; (3) fractal models consisting of Hurst exponent estimation of the continuity of vertical mineralization and its concentration–volume (C–V) fractal model separation mineralized zones in a 3D block model; and (4) interpretation and validation: magnetic inversion was utilized to constrain intrusive rock shape between cross-sections and additional interpret orebody geometry model by ordinary kriging interpolation method using Tongshan borehole dataset. The results indicate that (a) the Hurst exponent is useful for identifying the vertical continuity of mineralization (with the range between 0 and 1200 m), (b) the C–V fractal model is useful for identifying thresholds of Cu values in oxidation-type, skarn-type, and magmatic-type orebodies in the Tongshan deposit, and (c) the 3D geological and trend model can be combined to recognize potential subsurface targets in the Tongshan deposit. The methods can be applied to estimate mineral resources through district-scale exploration.

[1]  J. R. Wallis,et al.  Some long‐run properties of geophysical records , 1969 .

[2]  Gongwen Wang,et al.  3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China , 2012 .

[3]  Qiuming Cheng,et al.  Fractal characterization of the spatial distribution of geological point processes , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[4]  F. Agterberg,et al.  Multifractals and geostatistics , 2012 .

[5]  Gongwen Wang,et al.  Application of the multifractal singular value decomposition for delineating geophysical anomalies associated with molybdenum occurrences in the Luanchuan ore field (China) , 2012 .

[6]  Wang Jin-yi U-Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance , 2008 .

[7]  E. Grunsky,et al.  3D GIS as a support for mineral discovery , 2011 .

[8]  R. Zuo Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China , 2011 .

[9]  J. Chilès,et al.  Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules , 2008 .

[10]  G. Raines Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful? , 2008 .

[11]  Olivier Kaufmann,et al.  3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines , 2008, Comput. Geosci..

[12]  L. Durlofsky,et al.  Use of outcrop observations, geostatistical analysis, and flow simulation to investigate structural controls on secondary hydrocarbon migration in the Anacacho Limestone, Uvalde, Texas , 2011 .

[13]  F. Fallara,et al.  3-D Integrated Geological Modeling in the Abitibi Subprovince (Québec, Canada): Techniques and Applications , 2006 .

[14]  N. Jones,et al.  Building solid models from boreholes and user-defined cross-sections , 2003 .

[15]  P. Moarefvand,et al.  Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran , 2012 .

[16]  A. R. Bansal,et al.  Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany , 2011 .

[17]  Clayton V. Deutsch,et al.  Geostatistical Reservoir Modeling , 2002 .

[18]  E. Carranza,et al.  Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden) , 2010 .

[19]  Gongwen Wang,et al.  3D geological modeling based on gravitational and magnetic data inversion in the Luanchuan ore region, Henan Province, China , 2012 .

[20]  P. Afzal,et al.  Correlation between geology and concentration-volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran) , 2013 .

[21]  Geostatistical Ore Reserve Estimation: Developments in Geomathematics 2 , 1978 .

[22]  E. Carranza Geochemical Anomaly and Mineral Prospectivity Mapping in Gis , 2012 .

[23]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[24]  Renguang Zuo,et al.  Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China) , 2011 .

[25]  Clayton V. Deutsch,et al.  Transformation of Residuals to Avoid Artifacts in Geostatistical Modelling with a Trend , 2004 .

[26]  Simon Houlding Practical geostatistics : modeling and spatial analysis , 2000 .

[27]  P. Afzal,et al.  Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran , 2013 .

[28]  E. Carranza,et al.  Mapping of district-scale potential targets using fractal models , 2012 .

[29]  C. A. Carlson Spatial distribution of ore deposits , 1991 .

[30]  P. Moarefvand,et al.  Delineation of mineralization zones in porphyry Cu deposits by fractal concentrationvolume modeling , 2011 .

[31]  E. Carranza Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes , 2010 .

[32]  Q. Cheng,et al.  Application of Fractal Models to Distinguish between Different Mineral Phases , 2009 .

[33]  Q. Cheng,et al.  Evaluation of the uncertainty in estimation of metal resources of skarn tin in Southern China , 2009 .

[34]  P. Afzal,et al.  Identification of uranium targets based on airborne radiometric data analysis by using multifractal modeling, Tark and Avanligh 1:50 000 sheets, NW Iran , 2012 .

[35]  Gilles Levresse,et al.  Highly oxidised gold skarn fluids evolution in the Mezcala deposit, Guerrero, Mexico , 2003 .

[36]  Renguang Zuo,et al.  A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas , 2013 .

[37]  Renguang Zuo,et al.  Exploring the effects of cell size in geochemical mapping , 2012 .

[38]  Q. Cheng,et al.  The separation of geochemical anomalies from background by fractal methods , 1994 .

[39]  E. Carranza,et al.  Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana , 2009 .

[40]  Zhu Ming Fluid inclusion study of the Tongshan porphyry copper deposit,Heilongjiang province,China , 2009 .

[41]  A. G. Royle,et al.  Geostatistical ore reserve estimation. (Developments in geomathematics, 2.): M. David. Elsevier, Amsterdam, 1977, 364 pp., Dfl. 110.00 or US$ 44.95 , 1978 .

[42]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[43]  Dong Li,et al.  Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China , 2011, Comput. Geosci..

[44]  Emmanuel John M. Carranza,et al.  Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis , 2010 .

[45]  Simon W. Houlding,et al.  3D Geoscience Modeling: Computer Techniques for Geological Characterization , 1995 .

[46]  P. Moarefvand,et al.  Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran , 2012 .

[47]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[48]  Q. Cheng A New Model for Quantifying Anisotropic Scale Invariance and for Decomposition of Mixing Patterns , 2004 .

[49]  P. Moarefvand,et al.  Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran , 2010 .

[50]  Qiuming Cheng,et al.  The perimeter-area fractal model and its application to geology , 1995 .

[51]  P. Afzal,et al.  Delineation of mineralization zones using concentration–volume fractal method in Pb–Zn carbonate hosted deposits , 2012 .