Dynamical properties of phospholipid bilayers from computer simulation.

We present the results of a 10-ns molecular dynamics simulation of a dipalmitoylphosphatidylcholine/water system. The main emphasis of the present study is on the investigation of the stability over a long time and the dynamic properties of the water/membrane system. The motion of the lipid molecules is characterized by the center of mass movement and the displacement of individual atom groups. Because of the slow movement of the headgroup atoms, their contributions to the dipole potential vary slowly and with a large amplitude. Nevertheless, the water molecules compensate the strong fluctuations and maintain an almost constant total dipole potential. From the lateral displacement of the center of masses, we calculate the lateral diffusion coefficient to be Dlat = (3 +/- 0.6) x 10(-7) cm2/s, in agreement with neutron scattering results. The rotational motion is also investigated in our simulations. The calculated value for the rotational diffusion coefficient parallel to the molecular long axis, D = (1.6 +/- 0.1) x 10(8) s-1, is in good agreement with the experiment.

[1]  J. Israelachvili,et al.  Hydration or steric forces between amphiphilic surfaces , 1990 .

[2]  W. Jost,et al.  Physical Chemistry, An Advanced Treatise , 1974 .

[3]  V. Parsegian,et al.  Hydration forces between phospholipid bilayers , 1989 .

[4]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .

[5]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[6]  E. Sackmann,et al.  Chapter 5 - Physical Basis of Self-Organization and Function of Membranes: Physics of Vesicles , 1995 .

[7]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[8]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[10]  Allan Rosencwaig,et al.  Dynamic Properties of , 1972 .

[11]  A. Szabó Theory of fluorescence depolarization in macromolecules and membranes , 1984 .

[12]  K. Jørgensen,et al.  Small-scale lipid-membrane structure: simulation versus experiment. , 1997, Current opinion in structural biology.

[13]  Anthony J. Stone,et al.  Reorientational Correlation Functions, Quaternions and Wigner Rotation Matrices , 1989 .

[14]  W. Knoll,et al.  Local Dynamics of Lipid Bilayers Studied by Incoherent Quasi-Elastic Neutron Scattering , 1989 .

[15]  V A Parsegian,et al.  Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. , 1992, Biophysical journal.

[16]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[17]  G. Shipley,et al.  Characterization of the sub-transition of hydrated dipalmitoylphosphatidylcholine bilayers: X-ray diffraction study , 1982 .

[18]  T. McIntosh,et al.  Hydration force and bilayer deformation: a reevaluation. , 1986, Biochemistry.

[19]  Herman J. C. Berendsen,et al.  Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force , 1993 .

[20]  Douglas J. Tobias,et al.  Atomic-scale molecular dynamics simulations of lipid membranes , 1997 .

[21]  R. Pastor,et al.  Time Scales of Lipid Dynamics and Molecular Dynamics , 1996 .

[22]  M. Serra,et al.  The adsorption of Pseudomonas aeruginosa exotoxin A to phospholipid monolayers is controlled by pH and surface potential. , 1997, Biophysical journal.

[23]  R. Suter,et al.  X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. , 1996, Biophysical journal.

[24]  B. Berne Chapter 9 – Time-Dependent Properties of Condensed Media , 1971 .

[25]  P. Meier,et al.  Electron spin resonance study of phospholipid membranes employing a comprehensive line-shape model. , 1985, Biochemistry.

[26]  G. R. Luckhurst,et al.  The Molecular Dynamics of Liquid Crystals , 1994 .

[27]  R. Pastor,et al.  Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer , 1995 .

[28]  E. Sackmann,et al.  Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering , 1992 .

[29]  J. W. Humberston Classical mechanics , 1980, Nature.

[30]  K. Jacobson,et al.  Revisiting the fluid mosaic model of membranes. , 1995, Science.

[31]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[32]  G. Shipley,et al.  Characterization of the sub-transition of hydrated dipalmitoylphosphatidylcholine bilayers. Kinetic, hydration and structural study , 1982 .

[33]  U. Essmann,et al.  The origin of the hydration interaction of lipid bilayers from MD simulation of dipalmitoylphosphatidylcholine membranes in gel and liquid crystalline phases , 1995 .

[34]  V. Parsegian,et al.  Measurement of forces between lecithin bilayers , 1976, Nature.

[35]  H. Brockman,et al.  Dipole potential of lipid membranes. , 1994, Chemistry and physics of lipids.

[36]  C. Zannoni An Introduction to the Molecular Dynamics Method and to Orientational Dynamics in Liquid Crystals , 1994 .

[37]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[38]  K. Müller,et al.  Orientation-dependent deuteron spin-lattice relaxation times in bilayer membranes: Characterization of the overall lipid motion , 1990 .

[39]  Wataru Shinoda,et al.  Molecular dynamics study of a lipid bilayer: Convergence, structure, and long-time dynamics , 1997 .

[40]  Richard W. Pastor,et al.  Molecular dynamics and Monte Carlo simulations of lipid bilayers , 1994 .

[41]  B. Klösgen,et al.  Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration. , 1996, Biophysical journal.

[42]  Benoît Roux,et al.  Biological membranes : a molecular perspective from computation and experiment , 1996 .