TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models

[1]  Krzysztof J. Gorgolewski,et al.  The OpenNeuro resource for sharing of neuroscience data , 2021, eLife.

[2]  Simon B. Eickhoff,et al.  DataLad: distributed system for joint management of code, data, and their relationship , 2021, J. Open Source Softw..

[3]  Phillip A. Cook,et al.  ASLPrep: A Generalizable Platform for Processing of Arterial Spin Labeled MRI and Quantification of Regional Brain Perfusion , 2021, bioRxiv.

[4]  F. Turkheimer,et al.  Age-Specific Adult Rat Brain MRI Templates and Tissue Probability Maps , 2021, Frontiers in Neuroinformatics.

[5]  R. Poldrack,et al.  Atlas-Based Brain Extraction Is Robust Across RAT MRI Studies , 2020, IEEE International Symposium on Biomedical Imaging.

[6]  Paul A. Taylor,et al.  A comprehensive macaque fMRI pipeline and hierarchical atlas , 2020, NeuroImage.

[7]  M. Mallar Chakravarty,et al.  Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization , 2020, Frontiers in Neuroinformatics.

[8]  Bradley C. Love,et al.  Variability in the analysis of a single neuroimaging dataset by many teams , 2019, Nature.

[9]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the rat brain auditory system: Three-dimensional delineations based on structural and diffusion tensor magnetic resonance imaging , 2019, NeuroImage.

[10]  M. Mallar Chakravarty,et al.  An MRI-Derived Neuroanatomical Atlas of the Fischer 344 Rat Brain , 2019, Scientific Reports.

[11]  Russell A. Poldrack,et al.  PyBIDS: Python tools for BIDS datasets , 2019, J. Open Source Softw..

[12]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[13]  Saad Jbabdi,et al.  Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces , 2018, Trends in Cognitive Sciences.

[14]  David C Van Essen,et al.  The impact of traditional neuroimaging methods on the spatial localization of cortical areas , 2018, Proceedings of the National Academy of Sciences.

[15]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[16]  Thomas E. Nichols,et al.  Exploring the impact of analysis software on task fMRI results , 2018, bioRxiv.

[17]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[18]  Feng Wang,et al.  The VALiDATe29 MRI Based Multi-Channel Atlas of the Squirrel Monkey Brain , 2017, Neuroinformatics.

[19]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[20]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[21]  Joanna M. Wardlaw,et al.  Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging , 2017, Front. Neuroinform..

[22]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[23]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[24]  Maryann E. Martone,et al.  RRIDs: A Simple Step toward Improving Reproducibility through Rigor and Transparency of Experimental Methods , 2016, Neuron.

[25]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[26]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[27]  Mark A. Elliott,et al.  The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth , 2016, NeuroImage.

[28]  Prabha Siddarth,et al.  Cortical thickness and sulcal depth: insights on development and psychopathology in paediatric epilepsy , 2015, BJPsych Open.

[29]  Daniel H. Turnbull,et al.  4D MEMRI atlas of neonatal FVB/N mouse brain development , 2015, NeuroImage.

[30]  Joanna M. Wardlaw,et al.  Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method , 2015, PloS one.

[31]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the rat brain hippocampal region: Three-dimensional delineations based on magnetic resonance and diffusion tensor imaging , 2015, NeuroImage.

[32]  Trygve B. Leergaard,et al.  Addendum to “Waxholm Space atlas of the Sprague Dawley rat brain” [NeuroImage 97 (2014) 374-386] , 2015, NeuroImage.

[33]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[34]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the Sprague Dawley rat brain , 2014, NeuroImage.

[35]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[36]  G. Allan Johnson,et al.  A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability , 2013, NeuroImage.

[37]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  T. Rohlfing,et al.  Incorrect ICBM-DTI-81 atlas orientation and white matter labels , 2013, Front. Neurosci..

[39]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[40]  Joshua Carp,et al.  The secret lives of experiments: Methods reporting in the fMRI literature , 2012, NeuroImage.

[41]  Joshua Carp,et al.  On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments , 2012, Front. Neurosci..

[42]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[43]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[44]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[45]  J. Gilmore,et al.  Infant Brain Atlases from Neonates to 1- and 2-Year-Olds , 2011, PloS one.

[46]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[47]  Sebastián M. Real,et al.  E2F1 Regulates Cellular Growth by mTORC1 Signaling , 2011, PloS one.

[48]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[49]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[50]  P. Mitra,et al.  The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations , 2009, PloS one.

[51]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[52]  et al.,et al.  The Effect of Template Choice on Morphometric Analysis of Pediatric Brain Data ☆ , 2022 .

[53]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[54]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[55]  D. Louis Collins,et al.  Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults , 2006, MICCAI.

[56]  Abraham Z. Snyder,et al.  A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume , 2004, NeuroImage.

[57]  Suzanne E. Welcome,et al.  Mapping cortical change across the human life span , 2003, Nature Neuroscience.

[58]  Lutz Jäncke,et al.  Brain size and grey matter volume in the healthy human brain , 2002, Neuroreport.

[59]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[60]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[61]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[62]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[63]  R. Gur,et al.  Age-related volumetric changes of brain gray and white matter in healthy infants and children. , 2001, Cerebral cortex.

[64]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[65]  J. Townsend,et al.  Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. , 2000, Radiology.

[66]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[67]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[68]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[69]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[70]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[71]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[72]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[73]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[74]  R. H. Clarke,et al.  The Horsley–Clarke stereotaxic apparatus , 1978, The British journal of surgery.

[75]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[76]  Guy B. Williams,et al.  SPMMouse: A new toolbox for SPM in the animal brain , 2009 .

[77]  C. Economo,et al.  Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex , 2008 .

[78]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[79]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[80]  Richard F. Martin,et al.  Primate brain maps : structure of the macaque brain , 2000 .

[81]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[82]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[83]  J. Talairach,et al.  Atlas d'anatomie stéréotaxique : repérage radiologique indirect des noyaux gris centraux des régions mésencéphalo-sous-optique et hypothalamique de l'homme , 1957 .