Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas

Pulse-preserving capabilities of ultrawideband (UWB) antennas, which are measured in terms of two parameters-the fidelity factor and the pulse width stretch ratio, are analyzed with respect to variations of the antenna gain and the group delay of the radiated field. With the degrees of the gain and the group delay variations quantified by their respective standard deviations from constant values, Monte-Carlo simulations are performed to evaluate the effect of different gain and group delay functions using randomly generated Gaussian profiles. The means and the standard variations of the two performance parameter distributions are monitored and their two-dimensional profiles are specifically obtained for UWB antennas operating in 3.1-10.6 GHz. The analysis also demonstrates the use of the fidelity factor and the pulse width stretch ratio as useful characterizing parameters for UWB antennas

[1]  J. Ogilvy,et al.  Theory of Wave Scattering From Random Rough Surfaces , 1991 .

[2]  Ionospheric dispersion of electromagnetic pulses , 1973 .

[3]  Ieee Standards Board,et al.  IEEE standard definitions of terms for antennas , 1993 .

[4]  C. Baum,et al.  Impulse Radiating Antennas , 1993 .

[5]  W. Wiesbeck,et al.  Comparison of Frequency Domain and Time Domain Measurement Procedures for Ultra Wideband Antennas , 2004 .

[6]  C. J. Gibbins Propagation of very short pulses through the absorptive and dispersive atmosphere , 1990 .

[7]  Rittwik Jana,et al.  Measurement and modeling of an ultra-wide bandwidth indoor channel , 2004, IEEE Transactions on Communications.

[8]  Moe Z. Win,et al.  The ultra-wide bandwidth indoor channel: from statistical model to simulations , 2002, IEEE J. Sel. Areas Commun..

[9]  J. Kunisch,et al.  Efficient characterization of UWB antennas using the FDTD method , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[10]  D. Pozar Microwave Engineering , 1990 .

[11]  Moe Z. Win,et al.  Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view , 2002, IEEE J. Sel. Areas Commun..

[12]  Andreas F. Molisch,et al.  Channel models for ultrawideband personal area networks , 2003, IEEE Wireless Communications.

[13]  Rodney G. Vaughan,et al.  Channels, Propagation and Antennas for Mobile Communications , 2003 .

[14]  D. Lamensdorf,et al.  Baseband-pulse-antenna techniques , 1994, IEEE Antennas and Propagation Magazine.

[15]  Raphael Kastner,et al.  Antenna characterization in the time domain , 1997 .

[16]  K. C. Chen,et al.  Transient response of an infinite cylindrical antenna , 1983 .

[17]  P. Banerjee Wave propagation in nonlinear dispersive media , 1986, IEEE Antennas and Propagation Society Newsletter.

[18]  L. Felsen,et al.  Pulsed beam propagation in lossless dispersive media , 1998, Ultra- Wideband Short-Pulse Electromagnetics 4 (IEEE Cat. No.98EX112).

[19]  K. Yeh,et al.  Mean arrival time and mean pulsewidth of signals propagating through a dispersive and random medium , 1977 .

[20]  C. Knop,et al.  Pulsed electromagnetic wave propagation in dispersive media , 1964 .

[21]  J. Askne,et al.  Wave packets in strongly dispersive media , 1974 .

[22]  Carl E. Baum,et al.  Impulse Radiating Antennas, Part II , 1995 .

[23]  Gerhard Tröster,et al.  Characterization of small planar antennas for UWB mobile terminals , 2005, Wirel. Commun. Mob. Comput..

[24]  M. Kanda,et al.  A relatively short cylindrical broadband antenna with tapered resistive loading for picosecond pulse measurements , 1977 .

[25]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[26]  D. Pozar Waveform optimizations for ultrawideband radio systems , 2003 .