Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state.

A new method for shockless compression and acceleration of solid materials is presented. A plasma reservoir pressurized by a laser-driven shock unloads across a vacuum gap and piles up against an Al sample thus providing the drive. The rear surface velocity of the Al was measured with a line VISAR, and used to infer load histories. These peaked between approximately 0.14 and 0.5 Mbar with strain rates approximately 10(6)-10(8) s(-1). Detailed simulations suggest that apart from surface layers the samples can remain close to the room temperature isentrope. The experiments, analysis, and future prospects are discussed.

[1]  Clint Allen Hall,et al.  Isentropic compression experiments on the Sandia Z accelerator , 2000 .

[2]  M. Knudson,et al.  Magnetically driven isentropic compression experiments on the Z accelerator , 2001 .

[3]  Dave Braun,et al.  Effect of shock proximity on Richtmyer–Meshkov growth , 2003 .

[4]  James R. Asay,et al.  The use of shock-structure methods for evaluating high-pressure material properties , 1997 .

[5]  Liquid metallic hydrogen and the structure of brown dwarfs and giant planets , 1996, astro-ph/9703007.

[6]  H. Horn Dense astrophysical plasmas , 1991 .

[7]  Ashcroft Pairing instabilities in dense hydrogen. , 1990, Physical review. B, Condensed matter.

[8]  J. A. Paisner,et al.  The National Ignition Facility Project , 1994 .

[9]  M. Knudson,et al.  Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. , 2003, Physical review letters.

[10]  William A. Stygar,et al.  Experimental configuration for isentropic compression of solids using pulsed magnetic loading , 2001 .

[11]  A. Tielens,et al.  Interstellar Depletions and the Life Cycle of Interstellar Dust , 1998 .

[12]  Kenneth A. Meyer,et al.  Taylor instability in solids , 1974 .

[13]  H. Mizuno,et al.  Formation of the Giant Planets , 1980 .

[14]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[15]  D. Saumon,et al.  Modeling pressure-ionization of hydrogen in the context of astrophysics , 1999, astro-ph/9909168.

[16]  W. Nellis,et al.  Equation of state experiments and theory relevant to planetary modelling , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  M. Dresselhaus,et al.  The effects of external conditions on the internal structure of carbon aerogels , 1995 .

[18]  M. Knudson,et al.  Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.

[19]  D. Stevenson Interiors of the Giant Planets , 1982 .

[20]  U. F. Kocks,et al.  Dislocation kinetics at high strain rates , 1987 .

[21]  Katsunobu Nishihara,et al.  Multi-layered flyer accelerated by laser induced shock waves , 2000 .

[22]  Gilbert W. Collins,et al.  Accurate measurement of laser-driven shock trajectories with velocity interferometry , 1998 .

[23]  A. Ruoff,et al.  Solid hydrogen at 342 GPa: no evidence for an alkali metal , 1998, Nature.

[24]  G. Chiarotti,et al.  Physics of iron at Earth's core conditions , 2000, Science.

[25]  E. Wigner,et al.  On the Possibility of a Metallic Modification of Hydrogen , 1935 .

[26]  Richard A. Lerche,et al.  Ion‐temperature measurement of indirectly driven implosions using a geometry‐compensated neutron time‐of‐flight detector , 1995 .

[27]  W. J. Nellis Metallization of fluid hydrogen at 140 GPa (1.4 Mbar): implications for Jupiter , 2000 .

[28]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[29]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .