A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems

LBNL-XXXXE A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems A. McNeil Lawrence Berkeley National Laboratory J.C. Jonsson Lawrence Berkeley National Laboratory D. Appelfeld Technical University of Denmark G. Ward Anyhere Software E.S. Lee Lawrence Berkeley National Laboratory Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division November 2013 Published in Solar Energy 98 (2013): 404-414 DOI: 10.1016/j.solener.2013.09.032

[1]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[2]  J. Klems A new method for predicting the solar heat gain of complex fenestration systems: II, Detailed description of the matrix layer calculation , 1993 .

[3]  Thomas A. Germer,et al.  Goniometric optical scatter instrument for bidirectional reflectance distribution function measurements with out-of-plane and polarimetry capabilities , 1997, Optics & Photonics.

[4]  Marilyne Andersen,et al.  Experimental assessment of bi-directional transmission distribution functions using digital imaging techniques , 2001 .

[5]  Jan de Boer Modelling indoor illumination by complex fenestration systems based on bidirectional photometric data , 2006 .

[6]  Semra Aydinli,et al.  Measurement of luminous characteristics of daylighting materials , 1999 .

[7]  Marilyne Andersen,et al.  Goniophotometry and assessment of bidirectional photometric properties of complex fenestration systems , 2006 .

[8]  J. H. Klems,et al.  A new method for predicting the solar heat gain of complex fenestration systems , 1995 .

[9]  Roland Schregle,et al.  Daylight simulation with photon maps , 2005 .

[10]  G. W. Larson,et al.  Rendering with radiance - the art and science of lighting visualization , 2004, Morgan Kaufmann series in computer graphics and geometric modeling.

[11]  Marilyne Andersen,et al.  Comparison between ray-tracing simulations and bi- directional transmission measurements on prismatic glazing , 2003 .

[12]  J. H. Klems A New Method for Predicting the Solar Heat Gain of Complex Fenestration Systems I. Overview and Derivation of the Matrix Layer Calculation , 1993 .

[13]  J. H. Klems,et al.  Measurement of bidirectional optical properties of complex shading devices , 1995 .

[14]  F. E. Nicodemus Directional Reflectance and Emissivity of an Opaque Surface , 1965 .

[15]  Jacob C. Jonsson,et al.  Experimental validation of bidirectional reflection and transmission distribution measurements of specular and scattering materials , 2010, Photonics Europe.

[16]  Peter Apian-Bennewitz,et al.  Enhancing and calibrating a goniophotometer , 1998 .

[17]  K. Papamichael,et al.  Determination and application of bidirectional solar-optical properties of fenestration systems , 1988 .

[18]  Jacob C. Jonsson,et al.  Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance , 2011 .

[19]  Peter Apian-Bennewitz Review of simulating four classes of window materials for daylighting with non-standard BSDF using the simulation program Radiance , 2013, ArXiv.

[20]  Thomas A. Germer,et al.  A Goniometric Optical Scatter Instrument for Bidirectional Reflectance Distribution Function Measurements with Out-of-plane and Polarimetry Capabilities, ed. by Z.H. Gu and A.A. Maradudin , 1997 .

[21]  Marilyne Andersen,et al.  Bi-directional transmission properties of Venetian blinds: experimental assessment compared to ray-tracing calculations , 2005 .

[22]  Philip Farese,et al.  Tool to Prioritize Energy Efficiency Investments , 2012 .