Germline determinants of the somatic mutation landscape in 2,642 cancer genomes

Cancers develop through somatic mutagenesis, however germline genetic variation can markedly contribute to tumorigenesis via diverse mechanisms. We discovered and phased 88 million germline single nucleotide variants, short insertions/deletions, and large structural variants in whole genomes from 2,642 cancer patients, and employed this genomic resource to study genetic determinants of somatic mutagenesis across 39 cancer types. Our analyses implicate damaging germline variants in a variety of cancer predisposition and DNA damage response genes with specific somatic mutation patterns. Mutations in the MBD4 DNA glycosylase gene showed association with elevated C>T mutagenesis at CpG dinucleotides, a ubiquitous mutational process acting across tissues. Analysis of somatic structural variation exposed complex rearrangement patterns, involving cycles of templated insertions and tandem duplications, in BRCA1-deficient tumours. Genome-wide association analysis implicated common genetic variation at the APOBEC3 gene cluster with reduced basal levels of somatic mutagenesis attributable to APOBEC cytidine deaminases across cancer types. We further inferred over a hundred polymorphic L1/LINE elements with somatic retrotransposition activity in cancer. Our study highlights the major impact of rare and common germline variants on mutational landscapes in cancer.

Gunnar Rätsch | Mark Gerstein | Li Ding | Arcadi Navarro | Lara Urban | Bin Zhu | Seiya Imoto | Xavier Estivill | Steven Newhouse | Nikos Sidiropoulos | Ivica Letunic | Steven A Roberts | Alvis Brazma | Sergei Yakneen | Matthias Schlesner | Joachim Weischenfeldt | Hidewaki Nakagawa | Ivo Buchhalter | Andy Cafferkey | Gad Getz | Grace Tiao | Nilanjan Chatterjee | Olivier Harismendy | Esa Pitkänen | Kai Ye | Atul J Butte | Jared Simpson | Ayellet V. Segrè | Olivier Delaneau | Stephen J Chanock | Aparna Prasad | David C Wedge | Stephan Ossowski | Carlos D. Bustamante | Claudia Calabrese | Douglas F Easton | Reiner Siebert | Oliver Stegle | Matthew H Bailey | Peter Campbell | Serap Erkek | Ekta Khurana | Jay Mashl | Sushant Kumar | Yilong Li | Adrian Baez-Ortega | Steven A. Roberts | Jorge Zamora | Xing Hua | Shuto Hayashi | Lisa Mirabello | Jan O Korbel | Tobias Rausch | Oliver Drechsel | Mark H. Wright | Matthew Bailey | Roland Schwarz | Sebastian M Waszak | Tomas Tanskanen | O. Delaneau | M. Gerstein | A. Prasad | X. Estivill | A. Butte | G. Getz | N. Habermann | X. Hua | G. Rätsch | T. Rausch | C. Bustamante | S. Shringarpure | L. Ding | M. McLellan | R. Siebert | A. Brazma | T. Marquès-Bonet | J. Korbel | J. Simpson | K. Ye | Ekta Khurana | O. Harismendy | P. Campbell | S. Chanock | L. Aaltonen | N. Chatterjee | D. Easton | D. Wedge | D. Gordenin | Erik P. Garrison | G. Escaramís | J. Tubío | L. Alexandrov | M. Schlesner | O. Stegle | R. Schwarz | E. Pitkänen | S. Imoto | I. Letunic | A. Navarro | N. Sidiropoulos | G. Tiao | L. Dursi | Sushant Kumar | Jieming Chen | L. Mirabello | J. Weischenfeldt | Kuan-lin Huang | L. Klimczak | Bernardo Rodriguez-Martin | Jorge Zamora | H. Nakagawa | Yilong Li | S. Ossowski | Ying Wu | B. Zhu | Lei Song | S. Waszak | M. Wright | I. Buchhalter | S. Erkek | C. Calabrese | Venkata Yellapantula | N. Saini | Mattia Bosio | M. Tojo | R. Rabionet | L. Urban | A. Holik | Sergei Yakneen | G. Demidov | Shuto Hayashi | Andy Cafferkey | Eva G Álvarez | José María Heredia-Genestar | Francesc Muyas | O. Drechsel | Alicia L. Bruzos | A. Baez-Ortega | Anthony Dibiase | S. Newhouse | Tal Shmaya | Hana Susak | R. Koster | T. Tanskanen | Georgia Escaramis | Lauri A Aaltonen | Tomas Marques-Bonet | J. Mashl | P. Sharma | Francisco M. Vega | Raquel Rabionet | Anthony DiBiase | Lei Song | Natalie Saini | Leszek J Klimczak | Dmitry A Gordenin | Marta Tojo | Ludmil B Alexandrov | Erik Garrison | Venkata D Yellapantula | Matthew H. Bailey | Roelof Koster | Kuan-lin Huang | Mattia Bosio | Nina Habermann | Ying Wu | Tal Shmaya | Suyash S Shringarpure | Francesc Muyas | Bernardo Rodríguez-Martín | German M Demidov | Jose Maria Heredia-Genestar | Jieming Chen | L Jonathan Dursi | Ayellet V Segre | Eva G Alvarez | Alicia L Bruzos | Aliaksei Z Holik | Mike McLellan | Pramod Sharma | Hana Susak | Mark Wright | Jose MC Tubio | Francisco M De La Vega | A. Segrè | J. Zamora | S. Roberts | Bin Zhu | Erik P Garrison | I. Letunić | V. Yellapantula | A. Bruzos | Adrian Baez-Ortega | Eva G. Álvarez | H. Susak | L. Song | Tomàs Marquès-Bonet | Natalie Saini | Tomas Tanskanen | Ivica Letunic | J. M. Heredia-Genestar | Aparna Prasad | Yilong Li | Joachim Weischenfeldt

[1]  Gad Getz,et al.  Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing , 2014, Genome research.

[2]  J. Lupski,et al.  A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation , 2009, PLoS genetics.

[3]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[4]  Steven J. M. Jones,et al.  Integrated genomic and molecular characterization of cervical cancer , 2017, Nature.

[5]  Andrew Menzies,et al.  Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes , 2014, Science.

[6]  D. Gudbjartsson,et al.  Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma , 2014, Human molecular genetics.

[7]  Christopher P. Fischer,et al.  Genome-wide association study of colorectal cancer identifies six new susceptibility loci , 2015, Nature Communications.

[8]  Bin Zhu,et al.  Edinburgh Research Explorer Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors , 2022 .

[9]  Qing-Rong Chen,et al.  Systematic Genetic Analysis Identifies Cis-eQTL Target Genes Associated with Glioblastoma Patient Survival , 2014, PloS one.

[10]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[11]  Serena Nik-Zainal,et al.  Mechanisms underlying mutational signatures in human cancers , 2014, Nature Reviews Genetics.

[12]  D. Kerr,et al.  Implications of polygenic risk for personalised colorectal cancer screening. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[13]  Jesse J Salk,et al.  Exploring the implications of distinct mutational signatures and mutation rates in aging and cancer , 2016, Genome Medicine.

[14]  Gad Getz,et al.  An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers , 2015, Nature Genetics.

[15]  Stephen C. West,et al.  DNA interstrand crosslink repair and cancer , 2011, Nature Reviews Cancer.

[16]  Adam P Butler,et al.  Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer , 2014, Nature Genetics.

[17]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[18]  M. Stratton,et al.  Mutational signatures associated with tobacco smoking in human cancer , 2016, Science.

[19]  Jan O. Korbel,et al.  Patterns of structural variation in human cancer , 2017, bioRxiv.

[20]  Shan Jiang,et al.  Yap1 Activation Enables Bypass of Oncogenic Kras Addiction in Pancreatic Cancer , 2014, Cell.

[21]  A. Services,et al.  Integrated genomic and molecular characterization of cervical cancer. , 2017 .

[22]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[23]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[24]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[25]  Jeffrey H. Chuang,et al.  The tandem duplicator phenotype as a distinct genomic configuration in cancer , 2016, Proceedings of the National Academy of Sciences.

[26]  Benjamin J. Raphael,et al.  Integrated genomic characterization of oesophageal carcinoma , 2017, Nature.

[27]  K. Kinzler,et al.  Clues to the pathogenesis of familial colorectal cancer. , 1993, Science.

[28]  J. Herman,et al.  Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. , 2000, Journal of the National Cancer Institute.

[29]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[30]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[31]  N. Tretyakova,et al.  Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers , 2002, Oncogene.

[32]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[33]  Li Ding,et al.  Germline Mutations in Predisposition Genes in Pediatric Cancer. , 2015, The New England journal of medicine.

[34]  William Wheeler,et al.  Genome-wide association study identifies multiple loci associated with bladder cancer risk. , 2014, Human molecular genetics.

[35]  J. V. Moran,et al.  Transduction‐Specific ATLAS Reveals a Cohort of Highly Active L1 Retrotransposons in Human Populations , 2013, Human mutation.

[36]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[37]  Pui-Yan Kwok,et al.  A large multiethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences. , 2015, Cancer discovery.

[38]  S. Devine,et al.  A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer , 2016, Genome research.

[39]  Alan Ashworth,et al.  BRCAness revisited , 2016, Nature Reviews Cancer.

[40]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[41]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[42]  E. Lander,et al.  A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer , 2017, Nature Genetics.

[43]  D. Landsman,et al.  Identifying related L1 retrotransposons by analyzing 3' transduced sequences , 2003, Genome Biology.

[44]  Hans Clevers,et al.  Tissue-specific mutation accumulation in human adult stem cells during life , 2016, Nature.

[45]  Trey Ideker,et al.  Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer. , 2017, Cancer discovery.

[46]  L. Aaltonen,et al.  Frequent L1 retrotranspositions originating from TTC28 in colorectal cancer , 2014, Oncotarget.

[47]  S. Cummings,et al.  Breast cancer risk prediction using a clinical risk model and polygenic risk score , 2016, Breast Cancer Research and Treatment.

[48]  P. Iengar An analysis of substitution, deletion and insertion mutations in cancer genes , 2012, Nucleic acids research.

[49]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[50]  E. Lander,et al.  Lessons from the Cancer Genome , 2013, Cell.

[51]  Icgc,et al.  Pan-cancer analysis of whole genomes , 2017, bioRxiv.

[52]  Nicola D. Roberts,et al.  Pan-cancer analysis of whole genomes reveals driver rearrangements promoted by LINE-1 retrotransposition in human tumours , 2017, bioRxiv.

[53]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[54]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[55]  Michael Gertz,et al.  Enabling rapid cloud-based analysis of thousands of human genomes via Butler , 2017, bioRxiv.

[56]  J. Lupski,et al.  A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders , 2007, Cell.

[57]  H. El‐Serag,et al.  Epidemiology of viral hepatitis and hepatocellular carcinoma. , 2012, Gastroenterology.

[58]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[59]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[60]  D. Largaespada,et al.  Extensive somatic L1 retrotransposition in colorectal tumors , 2012, Genome research.

[61]  Dmitry A. Gordenin,et al.  Hypermutation in human cancer genomes: footprints and mechanisms , 2014, Nature Reviews Cancer.

[62]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[63]  Nuno A. Fonseca,et al.  Pan-cancer study of heterogeneous RNA aberrations , 2017, bioRxiv.

[64]  Marcin Imielinski,et al.  Insertions and Deletions Target Lineage-Defining Genes in Human Cancers , 2017, Cell.

[65]  Roland Arnold,et al.  Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers , 2015, Nature Genetics.

[66]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[67]  W. Edelmann,et al.  Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Gunnar Rätsch,et al.  Genomic basis for RNA alterations revealed by whole-genome analyses of 27 cancer types , 2017 .

[69]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[70]  Bjarni V. Halldórsson,et al.  Large-scale whole-genome sequencing of the Icelandic population , 2015, Nature Genetics.

[71]  Emmanouil T. Dermitzakis,et al.  Putative cis-regulatory drivers in colorectal cancer , 2014, Nature.

[72]  Nazneen Rahman,et al.  Realizing the promise of cancer predisposition genes , 2014, Nature.

[73]  Lovelace J. Luquette,et al.  Diverse Mechanisms of Somatic Structural Variations in Human Cancer Genomes , 2013, Cell.

[74]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[75]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[76]  Gad Getz,et al.  Somatic ERCC2 Mutations Are Associated with a Distinct Genomic Signature in Urothelial Tumors , 2016, Nature Genetics.

[77]  Frances M. G. Pearl,et al.  Therapeutic opportunities within the DNA damage response , 2015, Nature Reviews Cancer.

[78]  A. Bird,et al.  The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites , 1999, Nature.

[79]  K. Rogers,et al.  The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers , 2015, Hereditary cancer in clinical practice.

[80]  John S Witte,et al.  Turning of COGS moves forward findings for hormonally mediated cancers , 2013, Nature Genetics.

[81]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[82]  M. Stratton,et al.  Mutational signatures: the patterns of somatic mutations hidden in cancer genomes , 2014, Current opinion in genetics & development.

[83]  W. Edelmann,et al.  Mbd4 inactivation increases C→T transition mutations and promotes gastrointestinal tumor formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[85]  Joachim Weischenfeldt,et al.  A cell-based model system links chromothripsis with hyperploidy , 2015, Molecular systems biology.

[86]  Paolo Vineis,et al.  Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia , 2016, Nature Communications.

[87]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[88]  Kevin Y. Yip,et al.  FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer , 2014, Genome Biology.

[89]  J. Korbel,et al.  Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in Saccharomyces cerevisiae , 2017, G3: Genes, Genomes, Genetics.

[90]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[91]  Li Ding,et al.  Patterns and functional implications of rare germline variants across 12 cancer types , 2015, Nature Communications.

[92]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[93]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.