Cores of non-atomic market games

We study the cores of non-atomic market games, a class of transferable utility cooperative games introduced by Aumann and Shapley (Values of non-atomic games, 1974), and, more in general, of those games that admit a na-continuous and concave extension to the set of ideal coalitions, studied by Einy et al. (Int J Game Theory 28:1–14, 1999). We show that the core of such games is norm compact and some related results. We also give a Multiple Priors interpretation of some of our findings.

[1]  J. Retherford Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .

[2]  L. Montrucchio,et al.  Subcalculus for set functions and cores of TU games , 2003 .

[3]  Sergiu Hart,et al.  Asymptotic value of games with a continuum of players , 1977 .

[4]  Massimo Marinacci,et al.  Introduction to the mathematics of ambiguity , 2004 .

[5]  Massimo Marinacci,et al.  Stable cores of large games , 2005, Int. J. Game Theory.

[6]  Diego Moreno,et al.  The core of a class of non-atomic games which arise in economic applications , 1999, Int. J. Game Theory.

[7]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[8]  Igal Milchtaich Vector Measure Games Based on Measures with Values in an Infinite Dimensional Vector Space , 1998 .

[9]  Louis J. Billera,et al.  Cores of Nonatomic Linear Production Games , 1981, Math. Oper. Res..

[10]  D. Schmeidler Integral representation without additivity , 1986 .

[11]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[12]  G. Koshevoy,et al.  Cores of Cooperative Games, Superdifferentials of Functions, and the Minkowski Difference of Sets☆ , 2000 .

[13]  Sergiu Hart,et al.  Values of non-atomic vector measure games: Are they linear combinations of the measures? , 1988 .

[14]  Sergiu Hart,et al.  Values of non-differentiable markets with a continuum of traders , 1977 .

[15]  Abraham Neyman,et al.  Values of games with infinitely many players , 2002 .

[16]  L. Shapley,et al.  Values of Non-Atomic Games , 1974 .

[17]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[18]  Abraham Neyman,et al.  Values of non-atomic vector measure games , 2001 .

[19]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[20]  L. Wasserman,et al.  Bayes' Theorem for Choquet Capacities , 1990 .

[21]  I. Ekeland,et al.  Infinite-Dimensional Optimization And Convexity , 1983 .

[22]  Massimo Marinacci,et al.  Monotone Continuous Multiple Priors ∗ , 2003 .

[23]  R. D. Bourgin,et al.  Geometric Aspects of Convex Sets with the Radon-Nikodym Property , 1983 .

[24]  Marco Scarsini,et al.  Large newsvendor games , 2007, Games Econ. Behav..

[25]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[26]  Guillermo Owen,et al.  On the core of linear production games , 1975, Math. Program..

[27]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[28]  Jean-François Mertens Values and Derivatives , 1980, Math. Oper. Res..

[29]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[30]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[31]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[32]  J. Diestel,et al.  On vector measures , 1974 .