Amenable cones: error bounds without constraint qualifications

We provide a framework for obtaining error bounds for linear conic problems without assuming constraint qualifications or regularity conditions. The key aspects of our approach are the notions of amenable cones and facial residual functions. For amenable cones, it is shown that error bounds can be expressed as a composition of facial residual functions. The number of compositions is related to the facial reduction technique and the singularity degree of the problem. In particular, we show that symmetric cones are amenable and compute facial residual functions. From that, we are able to furnish a new H\"olderian error bound, thus extending and shedding new light on an earlier result by Sturm on semidefinite matrices. We also provide error bounds for the intersection of amenable cones, this will be used to provided error bounds for the doubly nonnegative cone. At the end, we list some open problems.

[1]  Kim-Chuan Toh,et al.  A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems , 2016, Math. Program..

[2]  Jos F. Sturm,et al.  Error Bounds for Linear Matrix Inequalities , 1999, SIAM J. Optim..

[3]  Facial Reduction and Partial Polyhedrality , 2018, SIAM J. Optim..

[4]  G. Pataki The Geometry of Semidefinite Programming , 2000 .

[5]  Gábor Pataki,et al.  Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs , 2017, Mathematical Programming Computation.

[6]  Dmitriy Drusvyatskiy,et al.  A note on alternating projections for ill-posed semidefinite feasibility problems , 2017, Math. Program..

[7]  Heinz H. Bauschke,et al.  Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization , 1999, Math. Program..

[8]  Masakazu Muramatsu,et al.  Facial Reduction Algorithms for Conic Optimization Problems , 2012, Journal of Optimization Theory and Applications.

[9]  J. Borwein,et al.  Characterizations of optimality without constraint qualification for the abstract convex program , 1982 .

[10]  L. Faybusovich Several Jordan-algebraic aspects of optimization , 2008 .

[11]  Bruno F. Lourenço,et al.  A bound on the Carathéodory number , 2016 .

[12]  Bruno F. Lourenço,et al.  Solving SDP completely with an interior point oracle , 2021, Optim. Methods Softw..

[13]  B. Tam A note on polyhedral cones , 1976, Journal of the Australian Mathematical Society.

[14]  Pablo A. Parrilo,et al.  Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone , 2014, Math. Program..

[15]  Dmitriy Drusvyatskiy,et al.  The Many Faces of Degeneracy in Conic Optimization , 2017, Found. Trends Optim..

[16]  A. Ioffe Variational Analysis of Regular Mappings: Theory and Applications , 2017 .

[17]  Chek Beng Chua Relating Homogeneous Cones and Positive Definite Cones via T-Algebras , 2003, SIAM J. Optim..

[18]  G. Pataki Strong Duality in Conic Linear Programming: Facial Reduction and Extended Duals , 2013, 1301.7717.

[19]  Henrik A. Friberg A relaxed-certificate facial reduction algorithm based on subspace intersection , 2016, Oper. Res. Lett..

[20]  Bruno F. Lourenço,et al.  Optimality Conditions for Problems over Symmetric Cones and a Simple Augmented Lagrangian Method , 2017, Math. Oper. Res..

[21]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[22]  Vera Roshchina,et al.  Facially Exposed Cones Are Not Always Nice , 2013, SIAM J. Optim..

[23]  Simon P. Schurr,et al.  Preprocessing and Regularization for Degenerate Semidefinite Programs , 2013 .

[24]  Henry Wolkowicz,et al.  Strong duality and minimal representations for cone optimization , 2012, Computational Optimization and Applications.

[25]  Kim-Chuan Toh,et al.  B-475 Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems , 2014 .

[26]  Leonid Faybusovich,et al.  Jordan-Algebraic Approach to Convexity Theorems for Quadratic Mappings , 2006, SIAM J. Optim..

[27]  Shuzhong Zhang,et al.  Duality Results for Conic Convex Programming , 1997 .

[28]  A. Ioffe Variational Analysis of Regular Mappings , 2017 .

[29]  Dmitriy Drusvyatskiy,et al.  Coordinate Shadows of Semidefinite and Euclidean Distance Matrices , 2014, SIAM J. Optim..

[30]  G. Pataki On the connection of facially exposed and nice cones , 2012, 1202.4043.

[31]  James Renegar,et al.  "Efficient" Subgradient Methods for General Convex Optimization , 2016, SIAM J. Optim..

[32]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[33]  Vera Roshchina,et al.  Facially Dual Complete (Nice) Cones and Lexicographic Tangents , 2017, SIAM J. Optim..

[34]  Levent Tunçel,et al.  Invariance and efficiency of convex representations , 2007, Math. Program..

[35]  J. H. Wilkinson,et al.  Error analysis , 2003 .

[36]  J. Borwein,et al.  Regularizing the Abstract Convex Program , 1981 .

[37]  Kim-Chuan Toh,et al.  A robust Lagrangian-DNN method for a class of quadratic optimization problems , 2017, Comput. Optim. Appl..

[38]  Akiko Yoshise,et al.  On optimization over the doubly nonnegative cone , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[39]  Bruno F. Lourenço,et al.  The automorphism group and the non-self-duality of p-cones , 2018, Journal of Mathematical Analysis and Applications.

[40]  Bruno F. Lourencco,et al.  The p-cones in dimension n ≥ 3 are not homogeneous when p ≠ 2 , 2017, 1701.05801.

[41]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[42]  R. Sznajder,et al.  Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras , 2010 .

[43]  J. Sturm Similarity and other spectral relations for symmetric cones , 2000 .

[44]  Minghui Liu,et al.  Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming , 2015, Math. Program..

[45]  B. Tam,et al.  A study of projectionally exposed cones , 1990 .

[46]  L. Faybusovich On Nesterov's Approach to Semi-infinite Programming , 2002 .

[47]  M. Koecher,et al.  The Minnesota Notes on Jordan Algebras and Their Applications , 1999 .

[48]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[49]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[50]  M. Baes,et al.  A Lipschitzian error bound for monotone symmetric cone linear complementarity problem , 2015 .

[51]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[52]  J. Borwein,et al.  Facial reduction for a cone-convex programming problem , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[53]  Frank Permenter,et al.  Solving Conic Optimization Problems via Self-Dual Embedding and Facial Reduction: A Unified Approach , 2017, SIAM J. Optim..

[54]  Bruno F. Lourencco,et al.  A bound on the Carath\'eodory number , 2016, 1608.07170.