Chapter 15 – Metal Membranes

[1]  Yue Cao,et al.  Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber , 2014, Korean Journal of Chemical Engineering.

[2]  F. Snijkers,et al.  Preparation of porous stainless steel hollow fibers by robotic fiber deposition , 2013 .

[3]  Zi-kui Liu,et al.  Pore structure and gas permeability of high Nb-containing TiAl porous alloys by elemental powder metallurgy for microfiltration application , 2013 .

[4]  L. Winnubst,et al.  Towards a generic method for inorganic porous hollow fibers preparation with shrinkage-controlled small radial dimensions, applied to Al2O3, Ni, SiC, stainless steel, and YSZ , 2012 .

[5]  Yuehui He,et al.  Innovative fabrication of Ti–48Al–6Nb porous coating by cold gas spraying and reactive sintering , 2012 .

[6]  Thijs Peters,et al.  On the high pressure performance of thin supported Pd–23%Ag membranes—Evidence of ultrahigh hydrogen flux after air treatment , 2011 .

[7]  Wei-hsin Chen,et al.  Hydrogen permeation measurements of Pd and PdCu membranes using dynamic pressure difference method , 2011 .

[8]  N. Xu,et al.  Effect of Al content on porous Ni–Al alloys , 2011 .

[9]  L. Winnubst,et al.  Porous stainless steel hollow fiber membranes via dry–wet spinning , 2011 .

[10]  Zupei Yang,et al.  A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes , 2011 .

[11]  J. Okazaki,et al.  An investigation of thermal stability of thin palladium–silver alloy membranes for high temperature hydrogen separation , 2011 .

[12]  M. Dolan Non-Pd BCC alloy membranes for industrial hydrogen separation , 2010 .

[13]  H. Nakajima,et al.  Fabrication, properties, and applications of porous metals with directional pores. , 2007, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[14]  N. Xu,et al.  Development of a new graded-porosity FeAl alloy by elemental reactive synthesis , 2009 .

[15]  N. Xu,et al.  Structural characteristics and high-temperature oxidation behavior of porous Fe–40 at.%Al alloy , 2009, Journal of Materials Science.

[16]  H. Nakajima,et al.  Compressive deformation behavior of porous γ-TiAl with directional pores , 2009 .

[17]  N. Xu,et al.  Preparation of titania microfiltration membranes supported on porous Ti–Al alloys , 2008 .

[18]  Wenzhu Lin,et al.  Hydrogen production from oxidative steam reforming of ethanol in a palladium–silver alloy composite membrane reactor , 2008 .

[19]  J. Lin,et al.  Effect of Nb on pore structure and tensile property of Ti–48Al cellular alloy , 2008 .

[20]  Xiaoliang Zhang,et al.  Hydrogen transport through thin palladium-copper alloy composite membranes at low temperatures , 2008 .

[21]  Dao-xi Li,et al.  Gradient porosity and large pore size NiTi shape memory alloys , 2007 .

[22]  B. Morreale,et al.  The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membranes , 2007 .

[23]  Yao Jiang,et al.  Fabrication of Ti–Al Micro/ Nanometer‐Sized Porous Alloys through the Kirkendall Effect , 2007 .

[24]  Yong Zhang,et al.  Isothermal corrosion TiAl–Nb alloy in liquid zinc , 2007 .

[25]  S. H. Kim,et al.  The study of a new porous nickel support for palladium-based alloy membrane , 2006 .

[26]  R. N. Wright,et al.  The effect of thermomechanical processing on the properties of Fe–40 at.%Al alloy , 2004 .

[27]  A. Paul,et al.  The Kirkendall effect in multiphase diffusion , 2004 .

[28]  Dong-Wook Lee,et al.  Preparation and characterization of SiO2 composite membrane for purification of hydrogen from methanol steam reforming as an energy carrier system for PEMFC , 2003 .

[29]  L. Devi,et al.  Characterization of Ni-Pd alloy as anode for methanol oxidative fuel cell , 2003 .

[30]  Kisay Lee,et al.  Optimum cleaning-in-place conditions for stainless steel microfiltration membrane fouled by terephthalic acid solids , 2002 .

[31]  Jackie Y. Ying,et al.  Nanostructured palladium–iron membranes for hydrogen separation and membrane hydrogenation reactions , 2002 .

[32]  G. Chen,et al.  Deformation mechanism at large strains in a high-Nb-containing TiAL at room temperature , 2002 .

[33]  W. J. Zhang,et al.  On the origin of superior high strength of Ti–45Al–10Nb alloys , 2002 .

[34]  Sujit Roy,et al.  A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode , 2002 .

[35]  T. Mäntylä,et al.  Monoclinic Zirconia Microfiltration Membranes: Preparation and Characterization , 2001 .

[36]  Enrico Drioli,et al.  An economic feasibility study for water gas shift membrane reactor , 2001 .

[37]  T. Czeppe,et al.  Structure and mechanical properties of NiAl and Ni3Al-based alloys , 2000 .

[38]  L. Rong,et al.  The influence of addition of TiH2 in elemental powder sintering porous Ni–Ti alloys , 2000 .

[39]  Akihisa Inoue,et al.  An amorphous alloy membrane without noble metals for gaseous hydrogen separation , 2000 .

[40]  H. Grabke Oxidation of NiAl and FeAl , 1999 .

[41]  Fu-hui Wang,et al.  Hot-Corrosion Behavior of TiAl-Base Intermetallics in Molten Salts , 1999 .

[42]  Young-Won Kim ADVANCES IN THE FUNDAMENTAL UNDERSTANDING FOR DESIGNING ENGINEERING GAMMA TIAL ALLOYS , 1999 .

[43]  P. Tortorelli,et al.  Critical factors affecting the high-temperature corrosion performance of iron aluminides , 1998 .

[44]  T. Noda Application of cast gamma TiAl for automobiles , 1998 .

[45]  H. Kamide,et al.  Hot Corrosion Behaviour of TiAl with Salt in Artificial Sea-Water , 1997 .

[46]  J. Nicholls,et al.  Hot Salt Corrosion of titanium aluminides , 1997 .

[47]  和久 渋江 TiAl (γ)/Ti3Al (α2) 合金の製造 , 1996 .

[48]  R. S. Porter,et al.  Filtration studies of selected anionic dyes using asymmetric titanium dioxide membranes on porous stainless-steel tubes , 1995 .

[49]  R. Bhave,et al.  Microporous alumina membranes , 1988 .