On the distances of cyclic codes of length 2e over Z4

Cyclic codes of length 2^e over Z"4 are precisely the ideals of the local ring Z"4[x]/. In this paper, we investigate the distances of cyclic codes of length 2^e over Z"4. The Hamming distances of all cyclic codes of length 2^e over Z"4 are determined. The exact Lee distances of some cyclic codes of length 2^e over Z"4 are also obtained.

[1]  Taher Abualrub,et al.  On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.

[2]  AbualrubT.,et al.  On the generators of Z4 cyclic codes of length 2e , 2006 .

[3]  Marcus Greferath,et al.  Cyclic codes over finite rings , 1997, Discret. Math..

[4]  Hai Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length Over , 2007 .

[5]  Graham H. Norton,et al.  On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.

[6]  Ian F. Blake Codes Over Certain Rings , 1972, Inf. Control..

[7]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[8]  Thomas Blackford Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..

[9]  Vera Pless,et al.  Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[10]  Thomas Blackford,et al.  Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..

[11]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[12]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[13]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[14]  Steven T. Dougherty,et al.  Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..

[15]  Chandra Satyanarayana Lee metric codes over integer residue rings (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[16]  Ian F. Blake Codes over Integer Residue Rings , 1975, Inf. Control..