Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem.

We propose a finite-difference algorithm for solving the initial problem for the Zakharov-Shabat system. This method has the fourth order of accuracy and represents a generalization of the second-order Boffetta-Osborne scheme. Our method permits the Zakharov-Shabat spectral problem to be solved more effectively for continuous and discrete spectra.

[1]  F. Kschischang,et al.  Bi-Directional Algorithm for Computing Discrete Spectral Amplitudes in the NFT , 2016, Journal of Lightwave Technology.

[2]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[3]  H. Vincent Poor,et al.  Introducing the fast nonlinear Fourier transform , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  Sander Wahls,et al.  Fast Nonlinear Fourier Transform Algorithms Using Higher Order Exponential Integrators , 2019, IEEE Access.

[5]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[6]  Vishal Vaibhav,et al.  Higher Order Convergent Fast Nonlinear Fourier Transform , 2017, IEEE Photonics Technology Letters.

[7]  A. Mussot,et al.  Solitonization of a dispersive wave. , 2016, Optics letters.

[8]  Sergei K. Turitsyn,et al.  Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives , 2017, 2018 European Conference on Optical Communication (ECOC).

[9]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[10]  A. Vasylchenkova,et al.  Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrödinger equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[11]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods , 2012, IEEE Transactions on Information Theory.

[12]  J. Satsuma,et al.  B Initial Value Problems of One-Dimensional self-Modulation of Nonlinear Waves in Dispersive Media (Part V. Initial Value Problems) , 1975 .

[13]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[14]  A. Osborne,et al.  Computation of the direct scattering transform for the nonlinear Schroedinger equation , 1992 .

[15]  S. Burtsev,et al.  Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems , 1998 .

[16]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[17]  Mechthild Thalhammer,et al.  High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations , 2017, Comput. Phys. Commun..

[18]  Jaroslaw E Prilepsky,et al.  Contour integrals for numerical computation of discrete eigenvalues in the Zakharov-Shabat problem. , 2018, Optics letters.

[19]  Sander Wahls,et al.  Higher Order Exponential Splittings for the Fast Non-Linear Fourier Transform of the Korteweg-De Vries Equation , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).