The size of power automata

We describe a class of simple transitive semiautomata that exhibit full exponential blow-up during deterministic simulation. For arbitrary semiautomata we show that it is PSPACE-complete to decide whether the size of the accessible part of their power automata exceeds a given bound. We comment on the application of these results to the study of cellular automata.

[1]  Klaus Sutner,et al.  Linear Cellular Automata and Fischer Automata , 1997, Parallel Comput..

[2]  Atwell R. Turquette Review: Arto Salomaa, On Many-Valued Systems of Logic; Arto Salomaa, On the Composition of Functions of Several Variables Ranging over a Finite Set , 1960 .

[3]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[4]  Boris A. Trakhtenbrot,et al.  Finite automata : behavior and synthesis , 1973 .

[5]  Klaus Sutner Reduced power automata , 2002, CIAA'02.

[6]  Arto Salomaa A Theorem Concerning the Composition of Functions of Several Variables Ranging Over a Finite Set , 1960, J. Symb. Log..

[7]  Arto Salomaa,et al.  Many-Valued Truth Functions, Cerny's Conjecture and Road Coloring , 1999, Bull. EATCS.

[8]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[9]  S. Yau Mathematics and its applications , 2002 .

[10]  Lyman P. Hurd Formal Language Characterization of Cellular Automaton Limit Sets , 1987, Complex Syst..

[11]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[12]  S. Wolfram Twenty Problems in the Theory of Cellular Automata , 1985 .

[13]  James Edwin Hanson,et al.  Computational Mechanics of Cellular Automata , 1993 .

[14]  Dexter Kozen,et al.  Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[15]  Friedrich J. Urbanek,et al.  On minimizing finite automata , 1989, Bull. EATCS.

[16]  Eric Goles Ch.,et al.  On the Limit Set of Some Universal Cellular Automata , 1993, Theor. Comput. Sci..

[17]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[18]  M. Delorme,et al.  Cellular automata : a parallel model , 1999 .

[19]  Danièle Beauquier Minimal Automaton for a Factorial, Transitive and Rational Language , 1989, Theor. Comput. Sci..

[20]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[21]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[22]  Hing Leung Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..

[23]  Klaus Sutner,et al.  Linear Cellular Automata and de Bruijn Automata , 1999 .

[24]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[25]  E. F. Codd,et al.  Cellular automata , 1968 .

[26]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[27]  Roland Fischer Sofic systems and graphs , 1975 .

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[30]  Dominique Perrin Symbolic Dynamics and Finite Automata , 1995, MFCS.

[31]  N. S. Barnett,et al.  Private communication , 1969 .

[32]  Klaus Sutner,et al.  De Bruijn Graphs and Linear Cellular Automata , 1991, Complex Syst..