Stochastic parameterization and El Niño-Southern Oscillation.

AbstractEl Nino–Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical Pacific. However, the models in the ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) have large deficiencies in ENSO amplitude, spatial structure, and temporal variability. The use of stochastic parameterizations as a technique to address these pervasive errors is considered. The multiplicative stochastically perturbed parameterization tendencies (SPPT) scheme is included in coupled integrations of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4). The SPPT scheme results in a significant improvement to the representation of ENSO in CAM4, improving the power spectrum and reducing the magnitude of ENSO toward that observed. To understand the observed impact, additive and multiplicative noise in a simple delayed oscillator (DO) model of ENSO is considered. Additive noise results in an increase in ENSO amplitude, but multiplicativ...

[1]  J. David Neelin,et al.  ENSO theory , 1998 .

[2]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[3]  W. Collins,et al.  Evaluation of climate models , 2013 .

[4]  Mark A. Cane,et al.  The El Niño-Southern Oscillation Phenomenon , 2010 .

[5]  Ensemble‐mean dynamics of the ENSO recharge oscillator under state‐dependent stochastic forcing , 2007 .

[6]  Andrew M. Moore,et al.  A Theory for the Limitation of ENSO Predictability Due to Stochastic Atmospheric Transients , 1997 .

[7]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[8]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[9]  T. Palmer,et al.  Stochastic parametrization and model uncertainty , 2009 .

[10]  Colin Price,et al.  El Niño Chaos: The role of noise and stochastic resonance on the ENSO cycle , 1998 .

[11]  M. Newman,et al.  Rossby waves in a stochastically fluctuating medium , 2001 .

[12]  Mark A. Cane,et al.  A study of self-excited oscillations of the tropical ocean-atmosphere system , 1990 .

[13]  Björn Grieger,et al.  Reconstruction of the El Niño attractor with neural networks , 1994 .

[14]  Frédéric Hourdin,et al.  Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model , 2007 .

[15]  R. Neale,et al.  The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events , 2008 .

[16]  Tao Lian,et al.  Strong influence of westerly wind bursts on El Niño diversity , 2015 .

[17]  Antje Weisheimer,et al.  Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Chris Snyder,et al.  Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations , 2015 .

[19]  C. Deser,et al.  Evaluating Modes of Variability in Climate Models , 2014 .

[20]  Max J. Suarez,et al.  A Delayed Action Oscillator for ENSO , 1988 .

[21]  M. Cane,et al.  A Model El Niñ–Southern Oscillation , 1987 .

[22]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[23]  C. Ropelewski,et al.  Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation , 1987 .

[24]  Aslak Grinsted,et al.  Nonlinear Processes in Geophysics Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series , 2022 .

[25]  Chester F. Ropelewski,et al.  Quantifying Southern Oscillation-Precipitation Relationships , 1996 .

[26]  Michael Ghil,et al.  El Nin˜o/Southern Oscillation and the annual cycle: subharmonic frequency-locking and aperiodicity , 1996 .

[27]  Paul D. Williams,et al.  Stochastic Parameterization: Towards a new view of Weather and Climate Models , 2015, 1510.08682.

[28]  J. Neelin,et al.  Toward stochastic deep convective parameterization in general circulation models , 2003 .

[29]  Thermally Forced Surface Winds on an Equatorial Beta Plane , 1999 .

[30]  Thomas Jung,et al.  Systematic Model Error: The Impact of Increased Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations , 2012 .

[31]  Hannah M. Christensen,et al.  Simulating weather regimes: impact of stochastic and perturbed parameter schemes in a simple atmospheric model , 2015, Climate Dynamics.

[32]  E. Rasmusson,et al.  Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño , 1982 .

[33]  K.,et al.  The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability , 2015 .

[34]  B. Kirtman,et al.  Origin of decadal El Niño–Southern Oscillation–like variability in a coupled general circulation model , 2006 .

[35]  F. Jin,et al.  Noise-Induced Instability in the ENSO Recharge Oscillator , 2010 .

[36]  Martin Leutbecher,et al.  A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System , 2009 .

[37]  Johnny Wei-Bing Lin,et al.  Influence of a stochastic moist convective parameterization on tropical climate variability , 2000 .

[38]  M. Cane,et al.  Relative Roles of Elevated Heating and Surface Temperature Gradients in Driving Anomalous Surface Winds over Tropical Oceans , 2001 .

[39]  J Berner,et al.  Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  P. Gent,et al.  A Coupled Air and Sea Model for the Tropical Pacific , 1978 .

[41]  G. Shutts A kinetic energy backscatter algorithm for use in ensemble prediction systems , 2005 .

[42]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[43]  E. Guilyardi,et al.  UNDERSTANDING EL NINO IN OCEAN-ATMOSPHERE GENERAL CIRCULATION MODELS : Progress and Challenges , 2008 .

[44]  L. Frankcombe,et al.  A stochastic dynamical systems view of the Atlantic Multidecadal Oscillation , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Matthew Newman,et al.  Drifts induced by multiplicative red noise with application to climate , 2003 .

[46]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[47]  Ping Chang,et al.  Chaotic dynamics versus stochastic processes in El Nin˜o-Southern Oscillation in coupled ocean-atmosphere models , 1996 .

[48]  Andrew Dawson,et al.  Simulating weather regimes: impact of model resolution and stochastic parameterization , 2015, Climate Dynamics.

[49]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[50]  Eli Tziperman,et al.  Westerly Wind Bursts: ENSO's tail rather than the dog? , 2004 .

[51]  A. Tompkins,et al.  A stochastic convective approach to account for model uncertainty due to unresolved humidity variability , 2008 .

[52]  Fei-Fei Jin,et al.  A simple approach to quantifying the noise–ENSO interaction. Part I: deducing the state-dependency of the windstress forcing using monthly mean data , 2015, Climate Dynamics.

[53]  Cécile Penland,et al.  A stochastic model of IndoPacific sea surface temperature anomalies , 1996 .

[54]  J. David Neelin,et al.  A Hybrid Coupled General Circulation Model for El Niño Studies , 1990 .

[55]  T. Barnett,et al.  Origins and Levels of Monthly and Seasonal Forecast Skill for United States Surface Air Temperatures Determined by Canonical Correlation Analysis , 1987 .

[56]  M. Flügel,et al.  The Role of Stochastic Forcing in Modulating ENSO Predictability , 2004 .

[57]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[58]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[59]  Paul D. Williams,et al.  Climatic impacts of stochastic fluctuations in air–sea fluxes , 2012 .

[60]  E. Tziperman,et al.  Quantifying the Dependence of Westerly Wind Bursts on the Large-Scale Tropical Pacific SST , 2007 .

[61]  S. Mallat A wavelet tour of signal processing , 1998 .

[62]  Prashant D. Sardeshmukh,et al.  Issues in Stochastic Parameterization , 2005 .

[63]  Xufeng Niu,et al.  Effect of El Niño on U.S. landfalling hurricanes, revisited , 1998 .

[64]  Andrew M. Moore,et al.  Stochastic forcing of ENSO by the intraseasonal oscillation , 1999 .

[65]  S. Bates,et al.  The CCSM4 Ocean Component , 2012 .

[66]  Yongqiang Yu,et al.  Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations , 2009 .

[67]  Thomas M. Smith,et al.  NOAA's Merged Land-Ocean Surface Temperature Analysis , 2012 .

[68]  M. Roulston,et al.  The response of an ENSO Model to climate noise, weather noise and intraseasonal forcing , 2000 .