Quasistatic effective medium theory of plasmonic nanostructures

In this paper, we introduce an analytic effective medium theory of plasmonic metamaterials founded on electrostatic eigenfunctions of plasmon states. The emphasis is on the sub-wavelength particles and metamaterials with unit cell much smaller than the optical wavelength. The theory covers plasmonic structures with arbitrary degree of symmetry: from completely asymmetric (including chiral) structures to fully isotropic ones. We also review several previously reported theoretical techniques used for calculating the effective parameters of plasmonic metamaterials in connection with our new theory. Several examples of negative permittivity and negative permeability plasmonic metamaterials are used to illustrate the theory.

[1]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[2]  Yeshaiahu Fainman,et al.  Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites. , 2006, Optics express.

[3]  David J. Bergman,et al.  Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems , 2004 .

[4]  G. Shvets,et al.  Electric and magnetic properties of subwavelength plasmonic crystals , 2005 .

[5]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[6]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[7]  D. Smith,et al.  Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Gennady Shvets,et al.  Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. , 2004, Physical review letters.

[9]  Viktor Podolskiy,et al.  Plasmon modes and negative refraction in metal nanowire composites. , 2003, Optics express.

[10]  Gennady Shvets,et al.  Magnetic plasmon resonance. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Gennady Shvets,et al.  The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. , 2007, Optics express.

[12]  Guy Bouchitté,et al.  Theory of mesoscopic magnetism in photonic crystals. , 2004, Physical review letters.

[13]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[14]  G. Shvets,et al.  Electric and magnetic properties of sub-wavelength plasmonic crystals , 2005 .

[15]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[16]  Yaroslav A. Urzhumov,et al.  Negative index meta-materials based on two-dimensional metallic structures , 2006 .

[17]  Richard W. Ziolkowski,et al.  Metamaterial-based efficient electrically small antennas , 2006 .

[18]  Vladimir M. Shalaev,et al.  Negative Index of Refraction in Optical Metamaterials , 2005 .

[19]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[20]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[21]  Yaroslav A. Urzhumov,et al.  Optical magnetism and negative refraction in plasmonic metamaterials , 2008 .

[22]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[23]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[24]  Uday K Chettiar,et al.  Negative index metamaterial combining magnetic resonators with metal films. , 2006, Optics express.

[25]  A. Efros Comment II on "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials". , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[27]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[28]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  O. Levy,et al.  Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers , 1997 .

[30]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.