Optimal feedback control for semilinear fractional evolution equations in Banach spaces

Abstract In this paper, we study optimal feedback controls of a system governed by semilinear fractional evolution equations via a compact semigroup in Banach spaces. By using the Cesari property, the Fillippove theorem and extending the earlier work on fractional evolution equations, we prove the existence of feasible pairs. An existence result of optimal control pairs for the Lagrange problem is presented.

[1]  S. Momani,et al.  Existence of the mild solution for fractional semilinear initial value problems , 2008 .

[2]  Yong Zhou,et al.  Nonlocal Cauchy problem for fractional evolution equations , 2010 .

[3]  Yong Zhou,et al.  Study of an Approximation Process of Time Optimal Control for Fractional Evolution Systems in Banach Spaces , 2011 .

[4]  D. O’Regan,et al.  On recent developments in the theory of abstract differential equations with fractional derivatives , 2010 .

[5]  A. I. Mees,et al.  Dynamics of feedback systems , 1981 .

[6]  V. Lakshmikantham,et al.  Theory of Fractional Dynamic Systems , 2009 .

[7]  JinRong Wang,et al.  Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls , 2011, Comput. Math. Appl..

[8]  Wei Wei,et al.  Optimal Feedback Control for a Class of Nonlinear Impulsive Evolution Equations , 2006 .

[9]  Yong-Kui Chang,et al.  Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order , 2009 .

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  Yong Zhou,et al.  Existence of mild solutions for fractional neutral evolution equations , 2010, Comput. Math. Appl..

[12]  Yong Zhou,et al.  A class of fractional evolution equations and optimal controls , 2011 .

[13]  P. Nistri,et al.  Optimal feedback control for a semilinear evolution equation , 1994 .

[14]  Mahmoud M. El-Borai,et al.  The fundamental solutions for fractional evolution equations of parabolic type , 2004 .

[15]  Johnny Henderson,et al.  Fractional functional differential inclusions with finite delay , 2009 .

[16]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[17]  Ravi P. Agarwal,et al.  A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative , 2009 .

[18]  Johnny Henderson,et al.  Existence results for fractional order functional differential equations with infinite delay , 2008 .

[19]  Yong Zhou,et al.  Fractional finite time delay evolution systems and optimal controls in infinite-dimensional spaces , 2011 .

[20]  Gaston M. N’Guérékata,et al.  A Cauchy problem for some fractional abstract differential equation with non local conditions , 2009 .

[21]  Gaston M. N'Guérékata,et al.  Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay , 2010, Appl. Math. Comput..

[22]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[23]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[24]  Mahmoud M. El-Borai,et al.  Semigroups and some nonlinear fractional differential equations , 2004, Appl. Math. Comput..

[25]  K. Balachandran,et al.  Controllability of fractional integrodifferential systems in Banach spaces , 2009 .

[26]  Rathinasamy Sakthivel,et al.  Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays , 2009 .

[27]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .