The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata

Given a Rabin tree-language and natural numbers i,j, the language is said to be i,j-feasible if it is accepted by a parity automaton using priorities {i,i+ 1,...,j}. The i,j-feasibility induces a hierarchy over the Rabin-tree languages called the Mostowski hierarchy. In this paper we prove that the problem of deciding if a language is i,j-feasible is reducible to the uniform universality problem for distance-parity automata. Distance-parity automata form a new model of automata extending both the nested distance desert automata introduced by Kirsten in his proof of decidability of the star-height problem, and parity automata over infinite trees. Distance-parity automata, instead of accepting a language, attach to each tree a cost in i¾?+ 1. The uniform universality problem consists in determining if this cost function is bounded by a finite value.

[1]  André Arnold,et al.  p329 The µ-calculus alternation-depth hierarchy is strict on binary trees , 1999, RAIRO Theor. Informatics Appl..

[2]  Nils Klarlund,et al.  Progress measures, immediate determinacy, and a subset construction for tree automata , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[3]  Kosaburo Hashiguchi,et al.  Algorithms for Determining Relative Star height and Star Height , 1988, IFIP Congress.

[4]  Klaus W. Wagner Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen , 1977, J. Inf. Process. Cybern..

[5]  Christof Löding,et al.  MSO on the Infinite Binary Tree: Choice and Order , 2007, CSL.

[6]  Thomas Colcombet,et al.  Bounds in ω-regularity , .

[7]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[8]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[9]  Andrzej Wlodzimierz Mostowski,et al.  Regular expressions for infinite trees and a standard form of automata , 1984, Symposium on Computation Theory.

[10]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[11]  Tomasz Fryderyk Urbanski On Deciding if Deterministic Rabin Language Is in Büchi Class , 2000, ICALP.

[12]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[13]  Julian C. Bradfield The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[14]  Daniel Kirsten,et al.  Distance desert automata and the star height problem , 2005, RAIRO Theor. Informatics Appl..

[15]  Thomas Colcombet,et al.  Bounds in w-Regularity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[16]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[17]  Igor Walukiewicz,et al.  Deciding Nondeterministic Hierarchy of Deterministic Tree Automata , 2005, Electron. Notes Theor. Comput. Sci..

[18]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[19]  Igor Walukiewicz,et al.  Relating Hierarchies of Word and Tree Automata , 1998, STACS.

[20]  Giacomo Lenzi A Hierarchy Theorem for the µ-Calculus , 1996, ICALP.

[21]  Filip Murlak,et al.  On the topological complexity of tree languages , 2008, Logic and Automata.

[22]  Nils Klarlund,et al.  Progress measures, immediate determinacy, and a subset construction for tree automata , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.