Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse-silicic large igneous province (SLIP) hypothesis.

During middle Eocene to middle Miocene time, development of the Cenozoic icehouse was coincident with a prolonged episode of explosive silicic volcanism, the ignimbrite flare-up of southwestern North America. We present geochronologic and biogeochemical data suggesting that, prior to the establishment of full glacial conditions with attendant increased eolian dust emission and oceanic upwelling, iron fertilization by great volumes of silicic volcanic ash was an effective climatic forcing mechanism that helped to establish the Cenozoic icehouse. Most Phanerozoic cool-climate episodes were coeval with major explosive volcanism in silicic large igneous provinces, suggesting a common link between these phenomena.

[1]  Tom Simkin,et al.  Volcanoes of the World , 2011 .

[2]  M. Allen,et al.  Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling , 2008 .

[3]  J. Overpeck,et al.  Increasing Eolian Dust Deposition in the Western United States Linked to Human Activity , 2008 .

[4]  P. Hofmann,et al.  Isotopic Evidence for Glaciation During the Cretaceous Supergreenhouse , 2008, Science.

[5]  G. Acton,et al.  Eocene-Oligocene paleoceanographic changes in the stratotype section, Massignano, Italy: Clues from rock magnetism and stable isotopes , 2007 .

[6]  B. Tilbrook,et al.  The Southern Ocean Biological Response to Aeolian Iron Deposition , 2007, Science.

[7]  L. Cherns,et al.  A pre-Hirnantian (Late Ordovician) interval of global cooling – The Boda event re-assessed , 2007 .

[8]  Theodore C. Moore,et al.  Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific , 2007 .

[9]  N. Mahowald,et al.  Exploring the sensitivity of interannual basin‐scale air‐sea CO2 fluxes to variability in atmospheric dust deposition using ocean carbon cycle models and atmospheric CO2 inversions , 2007 .

[10]  B. Quéguiner,et al.  Effect of natural iron fertilization on carbon sequestration in the Southern Ocean , 2007, Nature.

[11]  S. Bryan Silicic Large Igneous Provinces , 2007 .

[12]  D. Rea,et al.  Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean , 2007 .

[13]  X. Fang,et al.  Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition , 2007, Nature.

[14]  P. Croot,et al.  Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data , 2007 .

[15]  J. Hoefs,et al.  Pedogenic carbonates as a proxy for palaeo-CO2 in the Palaeozoic atmosphere , 2006 .

[16]  Jonguk Kim,et al.  Flux and grain size variation of eolian dust as a proxy tool for the paleo-position of the Intertropical Convergence Zone in the northeast Pacific , 2006 .

[17]  R. Berner Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model , 2006, American Journal of Science.

[18]  K. Lindsay,et al.  Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition , 2006 .

[19]  A. Ruffell,et al.  The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants [rapid communication] , 2005 .

[20]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[21]  Ulf Riebesell,et al.  Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment , 2005 .

[22]  Z. An,et al.  Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault , 2005 .

[23]  A. Leynaert,et al.  A seasonal study of diatom dynamics in the North Atlantic during the POMME experiment (2001): Evidence for Si limitation of the spring bloom , 2005 .

[24]  M. Brzezinski,et al.  Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX) , 2005 .

[25]  A. Gorbushina,et al.  The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass , 2005 .

[26]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[27]  L. Anderson,et al.  Middle Eocene to early Oligocene paleoceanography from Agulhas Ridge, Southern Ocean (Ocean Drilling Program Leg 177, Site 1090) , 2005 .

[28]  M. Saltzman,et al.  Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia , 2005 .

[29]  C. Zender,et al.  Quantifying mineral dust mass budgets:Terminology, constraints, and current estimates , 2004 .

[30]  C. Fielding,et al.  U–Pb zircon geochronology of Late Devonian to Early Carboniferous extension‐related silicic volcanism in the northern New England Fold Belt , 2004 .

[31]  John E Andrews,et al.  The Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean , 2004, Science.

[32]  R. Berner,et al.  CO2 as a Primary Driver of Phanerozoic Climate Change , 2003 .

[33]  Steven M Bohaty,et al.  Significant Southern Ocean warming event in the late middle Eocene , 2003 .

[34]  J. Stock,et al.  Cenozoic evolution of Neotethys and implications for the causes of plate motions , 2003 .

[35]  L. Gahagan,et al.  Evolution of Cenozoic seaways in the circum-Antarctic region , 2003 .

[36]  G. Dromart,et al.  Ice age at the Middle–Late Jurassic transition? , 2003 .

[37]  J. Baker,et al.  Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro-Arabian flood volcanism , 2003 .

[38]  J. Nishioka,et al.  A Mesoscale Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric Diatom Bloom , 2003, Science.

[39]  L. Frakes,et al.  First known Cretaceous glaciation: Livingston Tillite Member of the Cadna‐owie Formation, South Australia , 2003 .

[40]  L. Ferrari,et al.  Ignimbrite flare‐up and deformation in the southern Sierra Madre Occidental, western Mexico: Implications for the late subduction history of the Farallon plate , 2002 .

[41]  G. Soreghan,et al.  Atmospheric dust and algal dominance in the late paleozoic: A hypothesis , 2002 .

[42]  Chi‐Yue Huang,et al.  Cooling of the South China Sea by the Toba Eruption and correlation with other climate proxies ∼71,000 years ago , 2001 .

[43]  R. Zahn,et al.  Paleoproductivity increase at the Eocene–Oligocene climatic transition: ODP/DSDP sites 763 and 592 , 2001 .

[44]  S. Gíslason,et al.  Fertilizing potential of volcanic ash in ocean surface water , 2001 .

[45]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[46]  P. Renne,et al.  40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia , 2001 .

[47]  L. François,et al.  Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon , 2000, Nature.

[48]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[49]  S. Bryan,et al.  The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province , 2000 .

[50]  S. Kelley,et al.  Episodic Silicic Volcanism in Patagonia and the Antarctic Peninsula: Chronology of Magmatism Associated with the Break-up of Gondwana , 2000 .

[51]  W. Huff,et al.  Silurian K‐bentonites of the Dnestr Basin, Podolia, Ukraine , 2000, Journal of the Geological Society.

[52]  A. T. Anderson,et al.  Evolution of Bishop Tuff Rhyolitic Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts , 2000 .

[53]  E. Barron,et al.  Glaciation in the early Paleozoic ‘greenhouse’: the roles of paleogeography and atmospheric CO2 , 1999 .

[54]  I. Montañez,et al.  A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide , 1999 .

[55]  J. C. Crowell Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System , 1999 .

[56]  H. Staudigel,et al.  Biologically mediated dissolution of volcanic glass in seawater , 1998 .

[57]  C. Fielding,et al.  Granite genesis and basin formation in an extensional setting: The magmatic history of the Northernmost New England Orogen* , 1998 .

[58]  D. Rea,et al.  Rapid onset of glacial conditions in the subarctic North Pacific region at 2.67 Ma: Clues to causality , 1998 .

[59]  S. Bryan,et al.  Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: Implications for the break-up of eastern Gondwana , 1997 .

[60]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[61]  Andrew J. Watson,et al.  Volcanic iron, CO2, ocean productivity and climate , 1997, Nature.

[62]  L. Frakes,et al.  Mode of origin of dispersed clasts in Jurassic shales, southern part of the Yana-Kolyma fold belt, North East Asia , 1997 .

[63]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[64]  A. Watson,et al.  Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization , 1996, Nature.

[65]  W. Huff,et al.  Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics , 1996 .

[66]  W. R. Schmus,et al.  geochronology and significance of Late Permian ignimbrites in Northern Chile , 1996 .

[67]  D. Schrag,et al.  Evidence for Glacial Control of Rapid Sea Level Changes in the Early Cretaceous , 1996, Science.

[68]  Martin Heimann,et al.  Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration , 1996, Nature.

[69]  Kendrick C. Taylor,et al.  Potential atmospheric impact of the Toba Mega‐Eruption ∼71,000 years ago , 1996 .

[70]  R. Zahn,et al.  Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity , 1996 .

[71]  H. Staudigel,et al.  Biologically mediated dissolution of glass , 1995 .

[72]  P. Doyle,et al.  Cool Cretaceous climates: new data from the Albian of Western Australia , 1995, Journal of the Geological Society.

[73]  M. Wahlen,et al.  Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 , 1995, Nature.

[74]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[75]  F. Prahl,et al.  Sorptive preservation of labile organic matter in marine sediments , 1994, Nature.

[76]  D. Rea The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind , 1994 .

[77]  W. Hay Climate modes of the phanerozoic , 1994 .

[78]  P. Brenchley,et al.  Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period , 1994 .

[79]  S. Self,et al.  Climate-Volcanism Feedback and the Toba Eruption of ∼74,000 Years Ago , 1993, Quaternary Research.

[80]  J. Zachos,et al.  Abrupt Climate Change and Transient Climates during the Paleogene: A Marine Perspective , 1993, The Journal of Geology.

[81]  Y. Grahn,et al.  Early Silurian glaciations in Brazil , 1992 .

[82]  W. Huff,et al.  Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance , 1992 .

[83]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[84]  J. Sutter,et al.  Time-stratigraphic framework for the Eocene-Oligocene Mogollon-Datil volcanic field, southwest New Mexico , 1992 .

[85]  J. Sarmiento,et al.  Three‐dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry , 1991 .

[86]  S. Fitzwater,et al.  The case for iron , 1991 .

[87]  E. Christiansen,et al.  Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah , 1991 .

[88]  G. Aguirre-Díaz,et al.  The volcanic section at Nazas, Durango, Mexico, and the possibility of widespread Eocene volcanism within the Sierra Madre Occidental , 1991 .

[89]  Thure E. Cerling,et al.  Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic Paleosols , 1991 .

[90]  Robert A. Berner,et al.  A model for atmospheric CO 2 over Phanerozoic time , 1991 .

[91]  L. Frakes,et al.  A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous , 1988, Nature.

[92]  C. Powell,et al.  Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica , 1987 .

[93]  G. Walker Generation and dispersal of fine ash and dust by volcanic eruptions , 1981 .

[94]  J. Kennett Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .

[95]  Richard E. Ernst,et al.  Revised definition of Large Igneous Provinces (LIPs) , 2008 .

[96]  Keith A. Smith,et al.  Geological carbon sinks. , 2007 .

[97]  A. T. Anderson,et al.  Mixing and differentiation in the Oruanui rhyolitic magma, Taupo, New Zealand: evidence from volatiles and trace elements in melt inclusions , 2006 .

[98]  M. Wilson,et al.  Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review , 2004, Geological Society, London, Special Publications.

[99]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[100]  Keriellen Wolfe,et al.  Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? , 2003 .

[101]  Nir J. Shaviv,et al.  Celestial driver of Phanerozoic climate , 2003 .

[102]  P. Lipman Central San Juan caldera cluster: regional volcanic framework , 2000 .

[103]  T. Crowley Warm Climates in Earth History: Carbon dioxide and Phanerozoic climate , 1999 .

[104]  K. Salamy,et al.  Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data , 1999 .

[105]  W. Huff,et al.  Ordovician K-bentonites in the Argentine Precordillera: relations to Gondwana margin evolution , 1998, Geological Society, London, Special Publications.

[106]  P. Conaghan,et al.  Southern South America , 1994 .

[107]  P. Falkowski,et al.  Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean , 1994, Nature.

[108]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[109]  J. Sarmiento Atmospheric CO2 stalled , 1993, Nature.