Nanosystems, Edge Computing, and the Next Generation Computing Systems

It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle. These developments, in conjunction with neuromorphic and quantum computing, are envisioned to maintain the growth of computing power beyond the projected plateau for silicon technology. We survey the qualitative figures of merit of technologies of current interest for the next generation computing with an emphasis on edge computing.

[1]  B. Bernevig,et al.  Observation of a Majorana zero mode in a topologically protected edge channel , 2019, Science.

[2]  Randy H. Katz,et al.  FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud , 2019, IEEE Micro.

[3]  N. Engheta,et al.  Inverse-designed metastructures that solve equations , 2019, Science.

[4]  Qiang Wu,et al.  On-chip plasmon-induced transparency in THz metamaterial on a LiNbO3 subwavelength planar waveguide. , 2019, Optics express.

[5]  Mengwei Si,et al.  A critical review of recent progress on negative capacitance field-effect transistors , 2019, Applied Physics Letters.

[6]  James B. Aimone,et al.  Memristors learn to play , 2019 .

[7]  Dimitrios Tzovaras,et al.  Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges , 2019, Future Internet.

[8]  Stephan Menzel,et al.  Introduction to new memory paradigms: memristive phenomena and neuromorphic applications. , 2019, Faraday discussions.

[9]  M. Berggren,et al.  An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications , 2019, Advanced science.

[10]  Sang-Yeon Cho,et al.  Plasmonic device for spectral analysis , 2019, Electronics Letters.

[11]  Robert P. Colwell How we made the Pentium processors , 2019 .

[12]  Doo Seop Eom,et al.  Offloading and Transmission Strategies for IoT Edge Devices and Networks , 2019, Sensors.

[13]  Ingook Jang,et al.  An Approach to Share Self-Taught Knowledge between Home IoT Devices at the Edge † , 2019, Sensors.

[14]  Lei Yan,et al.  SatEC: A 5G Satellite Edge Computing Framework Based on Microservice Architecture , 2019, Sensors.

[15]  Claudia Felser,et al.  A complete catalogue of high-quality topological materials , 2019, Nature.

[16]  Feng Tang,et al.  Comprehensive search for topological materials using symmetry indicators , 2019, Nature.

[17]  Takuro Sato,et al.  PPCS: A Progressive Popularity-Aware Caching Scheme for Edge-Based Cache Redundancy Avoidance in Information-Centric Networks , 2019, Sensors.

[18]  Wushao Wen,et al.  Joint Optimization for Task Offloading in Edge Computing: An Evolutionary Game Approach , 2019, Sensors.

[19]  Özgür B. Akan,et al.  Internet of Things and Sensor Networks , 2019, IEEE Commun. Mag..

[20]  Ramiro Utrilla,et al.  Process Management in IoT Operating Systems: Cross-Influence between Processing and Communication Tasks in End-Devices , 2019, Sensors.

[21]  Hiram Galeana-Zapién,et al.  A Cognitive-Inspired Event-Based Control for Power-Aware Human Mobility Analysis in IoT Devices , 2019, Sensors.

[22]  Qianbin Chen,et al.  Minimum-Cost Offloading for Collaborative Task Execution of MEC-Assisted Platooning , 2019, Sensors.

[23]  Symeon Papavassiliou,et al.  Where There Is Fire There Is SMOKE: A Scalable Edge Computing Framework for Early Fire Detection , 2019, Sensors.

[24]  G. Birkl,et al.  Defect-Free Assembly of 2D Clusters of More Than 100 Single-Atom Quantum Systems. , 2019, Physical review letters.

[25]  K. S. Sandha,et al.  Comparative Analysis of Mixed CNTs and MWCNTs as VLSI Interconnects for Deep Sub-micron Technology Nodes , 2019, Journal of Electronic Materials.

[26]  A. Afzalian,et al.  Vertical Gate-All-Around Nanowire GaSb-InAs Core-Shell n-Type Tunnel FETs , 2019, Scientific Reports.

[27]  George T. Kanellos,et al.  Optics in Computing: From Photonic Network-on-Chip to Chip-to-Chip Interconnects and Disintegrated Architectures , 2019, Journal of Lightwave Technology.

[28]  Byung Chul Jang,et al.  Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. , 2019, Nano letters.

[29]  S. Stemmer,et al.  Design of Transistors Using High-Permittivity Materials , 2019, IEEE Transactions on Electron Devices.

[30]  Capcom Edge Take it to the edge , 2019, Nature Electronics.

[31]  Owain Vaughan Working on the edge , 2019 .

[32]  Mahadev Satyanarayanan,et al.  How we created edge computing , 2019, Nature Electronics.

[33]  Sandra Wachter Data protection in the age of big data , 2019 .

[34]  Stephen Lee,et al.  Exascale Computing in the United States , 2019, Computing in Science & Engineering.

[35]  Jie Wu,et al.  High-Performance Computing in Edge Computing Networks , 2019, J. Parallel Distributed Comput..

[36]  Xiaoheng Deng,et al.  Cost-Effective Edge Server Placement in Wireless Metropolitan Area Networks , 2018, Sensors.

[37]  M. Eto,et al.  Topological classification of the single-wall carbon nanotube , 2018, Physical Review B.

[38]  Michael C. Hamilton,et al.  Superconducting Neuromorphic Computing Using Quantum Phase-Slip Junctions , 2018, IEEE Transactions on Applied Superconductivity.

[39]  Weiguo Hu,et al.  Recent progress in piezotronics and tribotronics , 2018, Nanotechnology.

[40]  Paola Cappellaro,et al.  Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. , 2018, Physical review letters.

[41]  Susheng Tan,et al.  Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers. , 2018, Nano letters.

[42]  Toshiyuki Yamane,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[43]  J. Baugh,et al.  Network architecture for a topological quantum computer in silicon , 2018, Quantum Science and Technology.

[44]  Yuqing He,et al.  Catalogue of topological electronic materials , 2018, Nature.

[45]  M. Bandres,et al.  Photonic topological insulator in synthetic dimensions , 2018, Nature.

[46]  C. David Wright,et al.  In-memory computing on a photonic platform , 2018, Science Advances.

[47]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[48]  Mary Wootters,et al.  The N3XT Approach to Energy-Efficient Abundant-Data Computing , 2019, Proceedings of the IEEE.

[49]  Zhongchao Wei,et al.  Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure , 2019, Optics Communications.

[50]  Yang Yang,et al.  Multi-tier computing networks for intelligent IoT , 2019, Nature Electronics.

[51]  Gage Hills,et al.  30-nm Contacted Gate Pitch Back-Gate Carbon Nanotube FETs for Sub-3-nm Nodes , 2019, IEEE Transactions on Nanotechnology.

[52]  Andrea Alù,et al.  Observation of higher-order topological acoustic states protected by generalized chiral symmetry , 2018, Nature Materials.

[53]  Wei D. Lu,et al.  Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing , 2018, Nature Materials.

[54]  C. Ciminelli,et al.  Integrated Photonic and Plasmonic Resonant Devices for Label‐Free Biosensing and Trapping at the Nanoscale , 2018, physica status solidi (a).

[55]  Marius Echim,et al.  Edge computing for space applications: Field programmable gate array-based implementation of multiscale probability distribution functions. , 2018, The Review of scientific instruments.

[56]  Y. Baeyens,et al.  Silicon Photonics: a Scaling Technology for Communications and Interconnects , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[57]  J. Welser,et al.  Future Computing Hardware for AI , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[58]  Thar Baker,et al.  An Edge Computing Based Smart Healthcare Framework for Resource Management , 2018, Sensors.

[59]  Arijit Raychowdhury,et al.  MRAM and FinFETs team up , 2018, Nature Electronics.

[60]  Xiaojing Wang,et al.  A searchable personal health records framework with fine-grained access control in cloud-fog computing , 2018, PloS one.

[61]  Younghan Kim,et al.  A Distributed NFV-Enabled Edge Cloud Architecture for ICN-Based Disaster Management Services , 2018, Sensors.

[62]  Ruoxue Yan,et al.  Recent developments in photonic, plasmonic and hybrid nanowire waveguides , 2018 .

[63]  Apoorva Srivastava,et al.  Automated emergency paramedical response system , 2018, Health Information Science and Systems.

[64]  P. Ajayan,et al.  Composites with carbon nanotubes and graphene: An outlook , 2018, Science.

[65]  Younghan Kim,et al.  An Efficient Availability Guaranteed Deployment Scheme for IoT Service Chains over Fog-Core Cloud Networks † , 2018, Sensors.

[66]  Tiago M. Fernández-Caramés,et al.  A Practical Evaluation on RSA and ECC-Based Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices , 2018, Sensors.

[67]  Sridhar Krishnan,et al.  Wearable Hardware Design for the Internet of Medical Things (IoMT) , 2018, Sensors.

[68]  Bronis R. de Supinski,et al.  The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[69]  You-Jin Song,et al.  A Study on the Design of Fog Computing Architecture Using Sensor Networks , 2018, Sensors.

[70]  Improving the electron spin properties of nitrogen-vacancy centres in nanodiamonds by near-field etching , 2018, Scientific Reports.

[71]  Teresa Riesgo,et al.  Edge and Fog Computing Platform for Data Fusion of Complex Heterogeneous Sensors , 2018, Sensors.

[72]  Qixiang Cheng,et al.  Recent advances in optical technologies for data centers: a review , 2018, Optica.

[73]  Kai Fan,et al.  EARS-DM: Efficient Auto Correction Retrieval Scheme for Data Management in Edge Computing , 2018, Sensors.

[74]  H. Sharma,et al.  Multilayer Graphene Nanoribbon (MLGNR) as VLSI Interconnect Material at Nano-scaled Technology Nodes , 2018, Transactions on Electrical and Electronic Materials.

[75]  Armin Alaghi,et al.  Architecture Considerations for Stochastic Computing Accelerators , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[76]  Christian Lau,et al.  Tunable n-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfOX Films. , 2018, ACS nano.

[77]  Jan M. Rabaey,et al.  Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration , 2018, IEEE Journal of Solid-State Circuits.

[78]  Nelson Felix,et al.  Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond , 2018, Nature Electronics.

[79]  F. Balestra Nanoscale FETs for high performance and ultra low power operation at the end of the Roadmap , 2018, 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).

[80]  Niraj K. Jha,et al.  Smart, Secure, Yet Energy-Efficient, Internet-of-Things Sensors , 2018, IEEE Transactions on Multi-Scale Computing Systems.

[81]  Jiajun Shi,et al.  Optimal Computational Power Allocation in Multi-Access Mobile Edge Computing for Blockchain , 2018, Sensors.

[82]  Francky Catthoor,et al.  Understanding Energy Efficiency Benefits of Carbon Nanotube Field-Effect Transistors for Digital VLSI , 2018, IEEE Transactions on Nanotechnology.

[83]  Bruno Volckaert,et al.  A Secure Multi-Tier Mobile Edge Computing Model for Data Processing Offloading Based on Degree of Trust , 2018, Sensors.

[84]  Joondong Kim,et al.  All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing. , 2018, ACS applied materials & interfaces.

[85]  Naveen K. Chilamkurti,et al.  Editorial of special section on enabling technologies for industrial and smart sensor internet of things systems , 2018, The Journal of Supercomputing.

[86]  C. Dekker How we made the carbon nanotube transistor , 2018, Nature Electronics.

[87]  Zhigang Chen,et al.  Energy-Efficient Online Resource Management and Allocation Optimization in Multi-User Multi-Task Mobile-Edge Computing Systems with Hybrid Energy Harvesting , 2018, Sensors.

[88]  Jie Wu,et al.  Efficient Interference Estimation with Accuracy Control for Data-Driven Resource Allocation in Cloud-RAN † , 2018, Sensors.

[89]  Sridhar Krishnan,et al.  A Device-Independent Efficient Actigraphy Signal-Encoding System for Applications in Monitoring Daily Human Activities and Health , 2018, Sensors.

[90]  Lirong Zheng,et al.  Edge Computing Based IoT Architecture for Low Cost Air Pollution Monitoring Systems: A Comprehensive System Analysis, Design Considerations & Development , 2018, Sensors.

[91]  Marko Grobelnik,et al.  A Capillary Computing Architecture for Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers , 2018, Sensors.

[92]  Stephanie Law,et al.  Dirac plasmons and beyond: the past, present, and future of plasmonics in 3D topological insulators , 2018, MRS Communications.

[93]  K. Schanze Forum on Materials and Interfaces for Next-Generation Thin-Film Transistors. , 2018, ACS applied materials & interfaces.

[94]  Al2O3/HfO2 Multilayer High‐k Dielectric Stacks for Charge Trapping Flash Memories , 2018 .

[95]  Mehran Vali,et al.  Theoretical logic performance estimation of Silicon, Germanium and SiGe nanowire Fin-Field Effect Transistor , 2018, Superlattices and Microstructures.

[96]  M. Segev,et al.  Photonic topological Anderson insulators , 2018, Nature.

[97]  Juan Wang,et al.  Adaptive Computing Optimization in Software-Defined Network-Based Industrial Internet of Things with Fog Computing , 2018, Sensors.

[98]  Liping Ye,et al.  Topological negative refraction of surface acoustic waves in a Weyl phononic crystal , 2018, Nature.

[99]  John P. Hayes,et al.  The Promise and Challenge of Stochastic Computing , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[100]  Su‐Ting Han,et al.  Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing , 2018, Advanced materials.

[101]  Seyedeh Mahsa Kamali,et al.  Compact folded metasurface spectrometer , 2018, Nature Communications.

[102]  H. Peng,et al.  Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches , 2018, Science.

[103]  C. Felser,et al.  A complete catalogue of high-quality topological materials , 2018, Nature.

[104]  Feng Tang,et al.  Comprehensive search for topological materials using symmetry indicators , 2018, Nature.

[105]  Leroy Cronin,et al.  Designing Algorithms To Aid Discovery by Chemical Robots , 2018, ACS central science.

[106]  Armantas Melianas,et al.  Organic electronics for neuromorphic computing , 2018, Nature Electronics.

[107]  Lake Bu,et al.  A Short Survey at the Intersection of Reliability and Security in Processor Architecture Designs , 2018, 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[108]  Alberto Scionti,et al.  Towards a Scalable Software Defined Network-on-Chip for Next Generation Cloud , 2018, Sensors.

[109]  Jae-Yoon Jung,et al.  LiReD: A Light-Weight Real-Time Fault Detection System for Edge Computing Using LSTM Recurrent Neural Networks , 2018, Sensors.

[110]  D. Antoniadis,et al.  DISC-FETs: Dual Independent Stacked Channel Field-Effect Transistors , 2018, IEEE Electron Device Letters.

[111]  Chongwu Zhou,et al.  Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing. , 2018, ACS nano.

[112]  Y. Chong,et al.  Acoustic higher-order topological insulator on a kagome lattice , 2018, Nature Materials.

[113]  Yusheng Ji,et al.  A Context-Aware Edge-Based VANET Communication Scheme for ITS , 2018, Sensors.

[114]  W. Pernice,et al.  Carbon nanotubes as emerging quantum-light sources , 2018, Nature Materials.

[115]  Hong Wang,et al.  Mapping spiking neural networks onto a manycore neuromorphic architecture , 2018, PLDI.

[116]  Tiago M. Fernández-Caramés,et al.  A Fog Computing Based Cyber-Physical System for the Automation of Pipe-Related Tasks in the Industry 4.0 Shipyard , 2018, Sensors.

[117]  Eduardo de la Torre,et al.  FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo3 Framework , 2018, Sensors.

[118]  Gengfa Fang,et al.  An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture , 2018, Sensors.

[119]  Marian Verhelst,et al.  TRIG: Hardware Accelerator for Inference-Based Applications and Experimental Demonstration Using Carbon Nanotube FETs , 2018, 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).

[120]  Chiara Bartolozzi,et al.  Neuromorphic circuits impart a sense of touch , 2018, Science.

[121]  Aditya Chopra,et al.  FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud , 2018, 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[122]  N Gong,et al.  Signal and noise extraction from analog memory elements for neuromorphic computing , 2018, Nature Communications.

[123]  Ronny Henker,et al.  Survey of Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter and High-Performance Computing Communications , 2018, IEEE Communications Surveys & Tutorials.

[124]  Francisco Javier Ferrández Pastor,et al.  Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context † , 2018, Sensors.

[125]  G. Guo,et al.  Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing , 2018, Optica.

[126]  Yasuo Cho,et al.  Scanning probe-type data storage beyond hard disk drive and flash memory , 2018 .

[127]  B. Diény,et al.  Advanced memory—Materials for a new era of information technology , 2018 .

[128]  J. Hone,et al.  Fundamental limits to graphene plasmonics , 2018, Nature.

[129]  Ping Zhong,et al.  RCSS: A Real-Time On-Demand Charging Scheduling Scheme for Wireless Rechargeable Sensor Networks , 2018, Sensors.

[130]  S. Goldup Molecular machines swap rings , 2018, Nature.

[131]  Tarek El-Ghazawi,et al.  Residue number system arithmetic based on integrated nanophotonics. , 2018, Optics letters.

[132]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[133]  Je-Hyung Kim,et al.  Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. , 2018, Nano letters.

[134]  D. F. Ogletree,et al.  Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers , 2018, Scientific Reports.

[135]  Andrew Katumba,et al.  Numerical demonstration of neuromorphic computing with photonic crystal cavities. , 2018, Optics express.

[136]  Zhihong Chen Applications of 2D materials in interconnect technology , 2018 .

[137]  Kenji Leibnitz,et al.  Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks , 2018, Sensors.

[138]  Andy M Tyrrell,et al.  Towards a Bioelectronic Computer: A Theoretical Study of a Multi-Layer Biomolecular Computing System That Can Process Electronic Inputs , 2018, bioRxiv.

[139]  David V. Plant,et al.  A Comparative Study of Technology Options for Next Generation Intra- and Inter-datacenter Interconnects , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[140]  Giuseppe Iannaccone,et al.  Quantum engineering of transistors based on 2D materials heterostructures , 2018, Nature Nanotechnology.

[141]  Armin Alaghi,et al.  Computing wiht ramdomness , 2018, IEEE Spectrum.

[142]  Myriam Zerrad,et al.  Energy density engineering via zero-admittance domains in all-dielectric stratified materials , 2018 .

[143]  Gang Cao,et al.  Qubits based on semiconductor quantum dots , 2018 .

[144]  Jianzhong Li,et al.  Data management on new processors: A survey , 2018, Parallel Comput..

[145]  Yuh-Shyan Chen,et al.  A Mobility Management Using Follow-Me Cloud-Cloudlet in Fog-Computing-Based RANs for Smart Cities , 2018, Sensors.

[146]  David A. Patterson,et al.  50 Years of computer architecture: From the mainframe CPU to the domain-specific tpu and the open RISC-V instruction set , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[147]  Ahmad Zubair,et al.  Negative Capacitance Carbon Nanotube FETs , 2018, IEEE Electron Device Letters.

[148]  David Blaauw,et al.  iRazor: Current-Based Error Detection and Correction Scheme for PVT Variation in 40-nm ARM Cortex-R4 Processor , 2018, IEEE Journal of Solid-State Circuits.

[149]  Mario Gerla,et al.  Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support , 2018, Sensors.

[150]  Jeongmin Hong,et al.  Reconfigurable Skyrmion Logic Gates. , 2018, Nano letters.

[151]  Shinhyun Choi,et al.  SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations , 2018, Nature Materials.

[152]  Jun Tao,et al.  Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing. , 2018, ACS nano.

[153]  Hong Wang,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[154]  B. Koiller,et al.  Two-dimensional semiconductors pave the way towards dopant-based quantum computing , 2018, Beilstein journal of nanotechnology.

[155]  B. F. Spencer,et al.  Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring , 2018, Sensors.

[156]  Antoine Browaeys,et al.  Synthetic three-dimensional atomic structures assembled atom by atom , 2017, Nature.

[157]  Jeffrey H. Shapiro,et al.  Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[158]  Yusuf Leblebici,et al.  Neuromorphic computing with multi-memristive synapses , 2017, Nature Communications.

[159]  J. A. Logan,et al.  Quantized Majorana conductance , 2017, Nature.

[160]  Nan Zhang,et al.  A security mechanism based on evolutionary game in fog computing , 2017, Saudi journal of biological sciences.

[161]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[162]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[163]  B. Hensen,et al.  Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout , 2017, Nature Communications.

[164]  Mugen Peng,et al.  Edge computing technologies for Internet of Things: a primer , 2017, Digit. Commun. Networks.

[165]  Shanhui Fan,et al.  Plasmonic computing of spatial differentiation , 2017, Nature Communications.

[166]  Jacques Droulez,et al.  Skyrmion Gas Manipulation for Probabilistic Computing , 2017, Physical Review Applied.

[167]  Bin Gao,et al.  Multiplication on the edge , 2018 .

[168]  Jiaming Zhang,et al.  Analogue signal and image processing with large memristor crossbars , 2017, Nature Electronics.

[169]  Cary Y. Yang,et al.  On-Chip Interconnect Conductor Materials for End-of-Roadmap Technology Nodes , 2018, IEEE Transactions on Nanotechnology.

[170]  David A. Patterson,et al.  Reduced Instruction Set Computers Then and Now , 2017, Computer.

[171]  P. Ajayan,et al.  On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors , 2017, Scientific Reports.

[172]  A. Vinogradov,et al.  Passively Q-switched spaser as a terahertz clock oscillator for plasmon computer , 2017 .

[173]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[174]  W. Vandenberghe Two-dimensional topological insulator transistors as energy efficient switches robust against material and device imperfections , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[175]  Qi He,et al.  A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation , 2017, Sensors.

[176]  T. Saiki Switching of localized surface plasmon resonance of gold nanoparticles using phase-change materials and implementation of computing functionality , 2017 .

[177]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[178]  Chieh-Li Chen,et al.  A QRS Detection and R Point Recognition Method for Wearable Single-Lead ECG Devices , 2017, Sensors.

[179]  S. Palomba,et al.  Quantum plasmonics: longitudinal quantum plasmons in copper, gold, and silver , 2017, 1708.04059.

[180]  S. Bozhevolnyi,et al.  Nanofabrication of Plasmonic Circuits Containing Single Photon Sources , 2017, 1708.06957.

[181]  Tian-Ling Ren,et al.  Efficient and Reversible Electron Doping of Semiconductor-Enriched Single-Walled Carbon Nanotubes by Using Decamethylcobaltocene , 2017, Scientific Reports.

[182]  Liangxiu Han Towards Sustainable Smart Society: Big Data Driven Approaches , 2017, ICFNDS.

[183]  Myriam Zerrad,et al.  Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors , 2017 .

[184]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[185]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[186]  Jianshi Tang,et al.  High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. , 2017, Nature nanotechnology.

[187]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[188]  David C. Klonoff,et al.  Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices Connected to the Medical Internet of Things , 2017, Journal of diabetes science and technology.

[189]  Miguel López-Benítez,et al.  Wearable Internet of Things - from human activity tracking to clinical integration , 2017, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[190]  Sae Woo Nam,et al.  Photonic interconnect with superconducting electronics for large-scale neuromorphic computing (Invited paper) , 2017, 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[191]  J. Khurgin,et al.  The case for quantum plasmonics , 2017, Nature Photonics.

[192]  Jerry Tersoff,et al.  Carbon nanotube transistors scaled to a 40-nanometer footprint , 2017, Science.

[193]  M. Kamp,et al.  On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot. , 2017, Nano letters.

[194]  G. Prando Neuromorphic computation: Lowering dimensions , 2017 .

[195]  Somayyeh Koohi,et al.  Integration in analog optical computing using metasurfaces revisited: toward ideal optical integration , 2017 .

[196]  Bruno A. Olshausen,et al.  Neuromorphic computation: Sparse codes from memristor grids. , 2017, Nature nanotechnology.

[197]  Atay Ozgovde,et al.  EdgeCloudSim: An environment for performance evaluation of Edge Computing systems , 2017, 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC).

[198]  H.-S. Philip Wong,et al.  Hysteresis-Free Carbon Nanotube Field-Effect Transistors. , 2017, ACS nano.

[199]  J. A. Logan,et al.  Epitaxy of advanced nanowire quantum devices , 2017, Nature.

[200]  A. Maffucci,et al.  Plasmonic carbon interconnects to enable the THz technology: Properties and limits , 2017, 2017 IEEE 21st Workshop on Signal and Power Integrity (SPI).

[201]  Kenji Watanabe,et al.  Tuning quantum nonlocal effects in graphene plasmonics , 2017, Science.

[202]  Huili Liang,et al.  Review of flexible and transparent thin-film transistors based on zinc oxide and related materials* , 2017 .

[203]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[204]  Aubrey K. Dunne,et al.  Eyes of Things , 2017, 2017 IEEE International Conference on Cloud Engineering (IC2E).

[205]  Elodie Bugnicourt,et al.  Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields , 2017, Nanomaterials.

[206]  X. Bai,et al.  Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts , 2017, Nature.

[207]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[208]  Zdenek Becvar,et al.  Mobile Edge Computing: A Survey on Architecture and Computation Offloading , 2017, IEEE Communications Surveys & Tutorials.

[209]  H. Ming,et al.  Bloch surface waves confined in one dimension with a single polymeric nanofibre , 2017, Nature Communications.

[210]  S. Ray,et al.  One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review , 2017, Nanotechnology.

[211]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[212]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[213]  M. Fischetti,et al.  Imperfect two-dimensional topological insulator field-effect transistors , 2017, Nature Communications.

[214]  Nathan Youngblood,et al.  Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. , 2017, Nano letters.

[215]  Jan F. Schmidt,et al.  Correlated fluorescence blinking in two-dimensional semiconductor heterostructures , 2016, Nature.

[216]  K. B. Letaief,et al.  A Survey on Mobile Edge Computing: The Communication Perspective , 2017, IEEE Communications Surveys & Tutorials.

[217]  Ole Bethge,et al.  A microprocessor based on a two-dimensional semiconductor , 2016, Nature Communications.

[218]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[219]  Volker J. Sorger,et al.  Scaling vectors of attoJoule per bit modulators , 2017 .

[220]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[221]  Eric R. Anschuetz,et al.  Atom-by-atom assembly of defect-free one-dimensional cold atom arrays , 2016, Science.

[222]  Jing Kong,et al.  MoS2 Field-Effect Transistor with Sub-10 nm Channel Length. , 2016, Nano letters.

[223]  A. Roberts,et al.  Plasmonic circuits for manipulating optical information , 2016 .

[224]  Michael L. Schneider,et al.  Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[225]  Susan Stepney,et al.  Evolving Carbon Nanotube Reservoir Computers , 2016, UCNC.

[226]  Antoine Browaeys,et al.  An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays , 2016, Science.

[227]  H.-S. Philip Wong,et al.  Transforming nanodevices to next generation nanosystems , 2016, 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS).

[228]  Francisco Javier Ferrández Pastor,et al.  Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture , 2016, Sensors.

[229]  H. Wong,et al.  Computing with Carbon Nanotubes , 2016, IEEE Spectrum.

[230]  Michael Liehr,et al.  Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. , 2016, Nature nanotechnology.

[231]  António Barrias,et al.  A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications , 2016, Sensors.

[232]  Partha Pratim Sahu,et al.  All-Optical Surface Plasmonic Universal Logic Gate Devices , 2016, Plasmonics.

[233]  Suman Datta,et al.  Band structure engineered Germanium-Tin (GeSn) p-channel tunnel transistors , 2016, 2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).

[234]  Lianmao Peng,et al.  Performance projections for ballistic carbon nanotube FinFET at circuit level , 2016, Nano Research.

[235]  H. Wong,et al.  Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution. , 2016, ACS nano.

[236]  W. Pernice,et al.  Cavity-enhanced light emission from electrically driven carbon nanotubes , 2016, Nature Photonics.

[237]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[238]  Georges G. E. Gielen,et al.  Time-Based Sensor Interface Circuits in CMOS and Carbon Nanotube Technologies , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[239]  Ming Li,et al.  A fully reconfigurable photonic integrated signal processor , 2016, Nature Photonics.

[240]  Christophe Caloz,et al.  Metasurface Spatial Processor for Electromagnetic Remote Control , 2015, IEEE Transactions on Antennas and Propagation.

[241]  Jianping Yao,et al.  Integrated microwave photonics , 2012, 1211.4114.

[242]  Jaak Henno,et al.  Information and Interaction , 2016, EJC.

[243]  Yikai Su,et al.  On-Chip Tunable Second-Order Differential-Equation Solver Based on a Silicon Photonic Mode-Split Microresonator , 2015, Journal of Lightwave Technology.

[244]  Partha Pratim Sahu,et al.  Compact surface plasmonic waveguide component for integrated optical processor , 2015, Other Conferences.

[245]  Georges G. E. Gielen,et al.  Time-based sensor interface circuits in carbon nanotube technology , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[246]  Vladimir Stojanović,et al.  Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems , 2015, Photonics West - Optoelectronic Materials and Devices.

[247]  Hai Wei,et al.  Rapid Co-Optimization of Processing and Circuit Design to Overcome Carbon Nanotube Variations , 2015, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[248]  W. Haensch,et al.  Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors. , 2015, ACS nano.

[249]  S. Kessler,et al.  Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks , 2015 .

[250]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[251]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[252]  Subhasish Mitra,et al.  High-performance carbon nanotube field-effect transistors , 2014, 2014 IEEE International Electron Devices Meeting.

[253]  Tony F. Wu,et al.  Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs , 2014, 2014 IEEE International Electron Devices Meeting.

[254]  Hai Wei,et al.  Robust design and experimental demonstrations of carbon nanotube digital circuits , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[255]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[256]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[257]  Subhasish Mitra,et al.  Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[258]  Michael E. Hobart The Information: A History, a Theory, a Flood by James Gleick (review) , 2014 .

[259]  H. Wong,et al.  Advancements with carbon nanotube digital systems , 2014, IEEE International Interconnect Technology Conference.

[260]  Hai Wei,et al.  Carbon nanotube circuit integration up to sub-20 nm channel lengths. , 2014, ACS nano.

[261]  Lauren K. Wolf The Nanotube Computer Debuts , 2014 .

[262]  P. A. Calva,et al.  Power Breakdown Threshold of a Plasmonic Waveguide Filter , 2014, Plasmonics.

[263]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[264]  Y. S. Negi,et al.  Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review , 2014 .

[265]  Hai Wei,et al.  Sensor-to-Digital Interface Built Entirely With Carbon Nanotube FETs , 2014, IEEE Journal of Solid-State Circuits.

[266]  Hai Wei,et al.  Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits , 2013, 2013 IEEE International Electron Devices Meeting.

[267]  L. Winkless Carbon nanotube computer becomes reality , 2013 .

[268]  Franz Kreupl,et al.  Electronics: The carbon-nanotube computer has arrived , 2013, Nature.

[269]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[270]  Hong Yang,et al.  Integrated all-optical logic discriminators based on plasmonic bandgap engineering , 2013, Scientific Reports.

[271]  J. Dijon,et al.  Impact of the contact's geometry on the line resistivity of carbon nanotubes bundles for applications as horizontal interconnects , 2013 .

[272]  Greg Atwood,et al.  Next-Generation Memory [Guest editors' introduction] , 2013, Computer.

[273]  Giacomo Indiveri,et al.  Synthesizing cognition in neuromorphic electronic systems , 2013, Proceedings of the National Academy of Sciences.

[274]  Eduard Alarcón,et al.  Graphene-enabled Wireless Networks-on-Chip , 2013, 2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom).

[275]  Aaron D. Franklin,et al.  Electronics: The road to carbon nanotube transistors , 2013, Nature.

[276]  V. Marx Biology: The big challenges of big data , 2013, Nature.

[277]  Georges G. E. Gielen,et al.  Sacha: The stanford carbon nanotube controlled handshaking robot , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[278]  A Passian,et al.  Plasmon assisted thermal modulation in nanoparticles. , 2013, Optics express.

[279]  John A Rogers,et al.  Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. , 2013, Nature nanotechnology.

[280]  Gerd HG Moe-Behrens,et al.  The biological microprocessor, or how to build a computer with biological parts , 2013, Computational and structural biotechnology journal.

[281]  Georges G. E. Gielen,et al.  Experimental demonstration of a fully digital capacitive sensor interface built entirely using carbon-nanotube FETs , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[282]  Hai Wei,et al.  Carbon nanotube circuits: Opportunities and challenges , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[283]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[284]  W. Haensch,et al.  Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. , 2013, Nature nanotechnology.

[285]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[286]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[287]  Shriram Ramanathan,et al.  Correlated Electron Materials and Field Effect Transistors for Logic: A Review , 2012, 1212.2684.

[288]  J. Rivera The Information . A History , a Theory , a Flood , 2013 .

[289]  W. Haensch,et al.  High-density integration of carbon nanotubes via chemical self-assembly. , 2012, Nature nanotechnology.

[290]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[291]  Hong Yang,et al.  All-optical logic gates based on nanoscale plasmonic slot waveguides. , 2012, Nano letters.

[292]  O. Vaughan Scanning probe microscopy: A discerning look at the bonds in a molecule. , 2012, Nature nanotechnology.

[293]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[294]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[295]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[296]  John Gantz,et al.  The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East , 2012 .

[297]  Charles H. Davis The Information: A History, a Theory, a Flood , 2011, J. Assoc. Inf. Sci. Technol..

[298]  Hai Wei,et al.  Carbon nanotube electronics - Materials, devices, circuits, design, modeling, and performance projection , 2011, 2011 International Electron Devices Meeting.

[299]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[300]  Hai Wei,et al.  Carbon nanotube imperfection-immune digital VLSI: Frequently asked questions updated , 2011, 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[301]  A. Robinson Lots on Info, Not Always Accurate , 2011, Science.

[302]  Hong Wei,et al.  Cascaded logic gates in nanophotonic plasmon networks , 2011, Nature communications.

[303]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[304]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[305]  Thomas J. Misa Technology: The medium is the message , 2011, Nature.

[306]  Guido Groeseneken,et al.  Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects , 2011, Nanotechnology.

[307]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[308]  Jie Sun,et al.  Nanophotonic integration in state-of-the-art CMOS foundries. , 2011, Optics express.

[309]  Yong Zhao,et al.  Study of silicon photonics based on standard CMOS foundry , 2010, SPIE/COS Photonics Asia.

[310]  E. Bakkers,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[311]  P. McEuen,et al.  Electron Transport in Carbon Nanotubes , 2010 .

[312]  D. J. Moss,et al.  On-chip CMOS-compatible all-optical integrator , 2010, Nature communications.

[313]  O. Vaughan Fullerene synthesis: caught on camera. , 2010, Nature nanotechnology.

[314]  Carlo Sias,et al.  A trapped single ion inside a Bose–Einstein condensate , 2010, Nature.

[315]  Alexander Bolonkin Femtotechnology: Design of the Strongest AB Matter for Aerospace , 2010 .

[316]  Guo Zengyuan,et al.  Thermal conductivity of carbon nanotube: From ballistic to diffusive transport , 2009 .

[317]  G. Blake,et al.  A survey of multicore processors , 2009, IEEE Signal Processing Magazine.

[318]  O. Vaughan Probe microscopy: A closer look at the atoms in a molecule. , 2009, Nature nanotechnology.

[319]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[320]  George G Malliaras,et al.  Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions , 2009, Science.

[321]  U. Duerig,et al.  Nanoscale shape-memory function in highly cross-linked polymers. , 2008, Nano letters.

[322]  O. Vaughan Molecular switches: Order and control , 2008 .

[323]  Alfred J. Meixner,et al.  Carbon nanotubes and optical confinement: controlling light emission in nanophotonic devices , 2008, NanoScience + Engineering.

[324]  O. Vaughan Patterned surfaces: An organized union , 2008 .

[325]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[326]  T. Thundat,et al.  Thermoplasmonic shift and dispersion in thin metal films , 2008 .

[327]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[328]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[329]  Paul G. Kwiat,et al.  Quantum information: An integrated light circuit , 2008, Nature.

[330]  Philip R. Hemmer,et al.  Room-temperature solid-state quantum processors in diamond , 2008, SPIE Defense + Commercial Sensing.

[331]  G. Galli,et al.  Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation. , 2007, Physical review letters.

[332]  A. Lereu Modulation: Plasmons lend a helping hand , 2007 .

[333]  P. Bandaru Electrical properties and applications of carbon nanotube structures. , 2007, Journal of nanoscience and nanotechnology.

[334]  J. Hawkins,et al.  Why Can't a Computer be more Like a Brain? , 2007, IEEE Spectrum.

[335]  Uzi Vishkin,et al.  Plasmonics and the parallel programming problem , 2007, SPIE OPTO.

[336]  E. Hernández,et al.  Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes , 2007 .

[337]  D. Inaudi,et al.  LONG-RANGE PIPELINE MONITORING BY DISTRIBUTED FIBER OPTIC SENSING , 2010 .

[338]  Alistair Black,et al.  Information history , 2006, Annu. Rev. Inf. Sci. Technol..

[339]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[340]  Lijun Wu,et al.  Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure , 2006, Science.

[341]  R. H. Ritchie,et al.  Surface plasmon assisted thermal coupling of multiple photon energies , 2006 .

[342]  Pablo Jarillo-Herrero,et al.  Quantum supercurrent transistors in carbon nanotubes , 2006, Nature.

[343]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[344]  A Passian,et al.  Modulation of multiple photon energies by use of surface plasmons. , 2005, Optics letters.

[345]  Michael Mccoy ARKEMA GETS SET FOR LIFE ON ITS OWN: CEO Le Hénaff is confident his company can overcome chemical spin-offs' spotty history , 2004 .

[346]  Michael Mccoy Nantero To Move Nanotubes Into Computer Chips , 2004 .

[347]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[348]  E. Yablonovitch Towards rational material design , 2003, Nature materials.

[349]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[350]  Albert Polman,et al.  Teaching silicon new tricks , 2002, Nature materials.

[351]  Tutorial: Bonding more atoms together for a single molecule computer , 2002 .

[352]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[353]  Dennis Normile DNA-Based Computer Takes Aim at Genes , 2002, Science.

[354]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[355]  M. Jacoby CARBON NANOTUBE COMPUTER CIRCUITS: Novel processing and microfabrication lead to first single-molecule logic gate , 2001 .

[356]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[357]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[358]  K. Mølmer,et al.  RISQ-reduced instruction set quantum computers , 2000, quant-ph/0004014.

[359]  Fischer,et al.  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[360]  G Indiveri,et al.  Neuromorphic Vision Sensors , 2000, Science.

[361]  Bower,et al.  Electronic structures of single-walled carbon nanotubes determined by NMR , 2000, Science.

[362]  S. Tans,et al.  Molecular transistors: Potential modulations along carbon nanotubes , 2000, Nature.

[363]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[364]  K. Mølmer,et al.  RISQ-reduced instruction set quantum computers , 2000, quant-ph/0004014.

[365]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[366]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[367]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[368]  A Watson Why Can't a Computer Be More Like a Brain? , 1997, Science.

[369]  David E. J. Jones Technical boundless optimism , 1995, Nature.

[370]  Mahadev Satyanarayanan,et al.  Experience with Disconnected Operation in a Mobile Computing Environment , 1994, Mobidata.

[371]  M. Satyanarayanan,et al.  Mobile computing , 1993, Computer.

[372]  J. Bardeen Research Leading to Point-Contact Transistor. , 1957, Science.

[373]  Electronic Computers in Molecular Quantum Mechanics , 1956, Nature.