The sensitivity of receptors in the posterior median eye of the nocturnal spider,Dinopis

Summary1.Intracellular and extracellular (ERG) recordings were made of receptor responses in the posterior median eye of the nocturnal spiderDinopis subrufus. These are among the largest single lens eyes described among the arthropods and are used during prey capture at night.2.The receptor potential is a depolarising wave, typical of the responses recorded from other spiders, and from rhabdomeric photoreceptors in general. By comparison with other spiders, the receptor responses are slow in time course. Large (4–12 mV) discrete potentials are seen at very low intensities. The evidence suggests that bumps are responses to single photons. If this is the case the quantum capture efficiency for receptors shown to be in their diurnal state of photoreceptive membrane depletion is 7%, measured relative to photons incident on the cornea.3.Large responses to single photons and the known light gathering capacity of the lens (Blest and Land, 1977) make individual dark adapted photoreceptors very sensitive. A corneal flux of 5×105 photons·cm−2·s−1 produces an initial responses of half maximal amplitude. This corresponds to an intensity midway between starlight and moonlight under clear sky conditions. 2×105 more light is required to produce the same response in the diurnal jumping spiderPlexippus (Hardie and Duelli, 1978).4.The spectral sensitivities of single photoreceptors are almost identical to that of the massed receptor response (ERG), and this indicates a retina dominated by photoreceptors containing a single 517 nm rhodopsin. UV sensitivity is depressed by selective attenuation in the lens matrix.5.The mean receptor angular sensitivity function has a half-width of 2.3°, larger than expected from the optical data, but still sufficient for the resolution of spatial detail whose fineness matches the receptor mosaic.6.ERG recordings fail to detect the sensitivity shifts that should be associated with the daily cycle of photoreceptive membrane (Blest, 1978). Perhaps such shifts may still exist because we find that our test lights block the synthetic phase of photoreceptive membrane turnover.7.By comparison with vertebrate rods and cones,Dinopis photoreceptors exhibit the following properties of a scotopic system: large discrete responses to single photons, a slow time course of response, the possibility of electrical coupling between receptors and a spectral sensitivity in the blue/green. The resolving power ofDinopis retina is inferior to human rod vision at the same intensities, as expected of a smaller eye.

[1]  F. Gribakin,et al.  The Role of the Photoreceptor Membrane in Photoreceptor Optics , 1975 .

[2]  L. Machan Spectral Sensitivity of Scorpion Eyes and the Possible Role of Shielding Pigment Effect , 1968 .

[3]  M. Land,et al.  The physiological optics of Dinopis subrufus L. Koch: A fish-lens in a spider , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  D. Owen,et al.  Handbook of Statistical Tables. , 1962 .

[5]  Peter Kunze,et al.  Apposition and Superposition Eyes , 1979 .

[6]  E. R. Dixon Spectral distribution of Australian daylight , 1978 .

[7]  R D De Voe,et al.  Ultraviolet and green receptors in principal eyes of jumping spiders. , 1975 .

[8]  A. D. Blest The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  M. Schliwa,et al.  The lateral eyes of the scorpion, Androctonus australis , 2004, Cell and Tissue Research.

[10]  D. Burkhardt,et al.  Das Sehfeld einzelner Sehzellen: Eine Richtigstellung , 1965, Zeitschrift für vergleichende Physiologie.

[11]  P. Lillywhite,et al.  Coupling between locust photoreceptors revealed by a study of quantum bumps , 1978, Journal of comparative physiology.

[12]  H. Autrum Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus) , 1950, Zeitschrift für vergleichende Physiologie.

[13]  R. DeVoe,et al.  Spectral Sensitivities of Wolf Spider Eyes , 1969, The Journal of general physiology.

[14]  G. Fleissner,et al.  The absolute sensitivity of the median and lateral eyes of the scorpion,Androctonus australis L. (Buthidae, Scorpiones) , 2004, Journal of comparative physiology.

[15]  Kuno Kirschfeld,et al.  The Absolute Sensitivity of Lens and Compound Eyes , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[16]  Simon B. Laughlin,et al.  The sensitivities of dragonfly photoreceptors and the voltage gain of transduction , 2004, Journal of comparative physiology.

[17]  F. Dodge,et al.  Voltage Noise in Limulus Visual Cells , 1968, Science.

[18]  D. Nässel,et al.  Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation , 1979, Journal of comparative physiology.

[19]  Properties of Single Cells in Posterior Lateral Eyes of Jumping Spiders , 1978 .

[20]  Roger C. Hardie,et al.  Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  S. Yamashita,et al.  Spectral sensitivities of jumping spider eyes , 1976, Journal of comparative physiology.

[22]  A. Rose,et al.  Vision: human and electronic , 1973 .

[23]  G. Fain,et al.  Quantum sensitivity of rods in the toad retina. , 1975, Science.

[24]  A. Whittle Reticular Specializations in Photoreceptors: a Review , 1976 .

[25]  Gary D. Bernard,et al.  The effect of motion on visual acuity of the compound eye: A theoretical analysis , 1975, Vision Research.

[26]  S. Stowe Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk , 2004, Cell and Tissue Research.

[27]  Ultraviolet and Green Receptors in Principal Eyes of Jumping Spiders , 2003 .

[28]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[29]  M. Schliwa,et al.  Arhabdomeric cells of the median eye retina of scorpions , 1979, Journal of comparative physiology.

[30]  D. S. Williams,et al.  The posterior median eyes of the dinopid spider Menneus , 2004, Cell and Tissue Research.

[31]  A. Hodgkin,et al.  Changes in time scale and sensitivity in the ommatidia of Limulus , 1964, The Journal of physiology.

[32]  A. Hodgkin,et al.  Changes in time scale and sensitivity in turtle photoreceptors , 1974, The Journal of physiology.

[33]  W. McFarland,et al.  Evolutionary Adaptations of Fishes to the Photic Environment , 1977 .

[34]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[35]  R. Devoe Dual Sensitivities of Cells in Wolf Spider Eyes at Ultraviolet and Visible Wavelengths of Light , 1972, The Journal of general physiology.

[36]  P. Lillywhite,et al.  Single photon signals and transduction in an insect eye , 2004, Journal of comparative physiology.

[37]  O. Trujillo-Cenóz,et al.  The fine structure of the visual system of lycosa (Araneae: Lycosidae) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[38]  Samuel Rossel,et al.  Regional differences in photoreceptor performance in the eye of the praying mantis , 1979, Journal of comparative physiology.

[39]  P. Carricaburu Dioptrique oculaire du scorpion Androctonus australis , 1968 .

[40]  E Kaplan,et al.  Properties of visual cells in the lateral eye of Limulus in situ: intracellular recordings , 1975, The Journal of general physiology.

[41]  G A Horridge,et al.  The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  M. H. Robinson,et al.  The Predatory Behavior of the Ogre-Faced Spider Dinopis longipes F. Cambridge (Araneae: Dinopidae) , 1971 .

[43]  Kuno Kirschfeld,et al.  The Resolution of Lens and Compound Eyes , 1976 .

[44]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[45]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[46]  W. A. Day,et al.  The Rhabdomere organization of some nocturnal pisaurid spiders in light and darkness , 1978 .

[47]  George Adrian Horridge,et al.  The superposition eye of skipper butterflies , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  M. Fuortes,et al.  Generator Potentials in Invertebrate Photoreceptors , 1972 .

[49]  S. Itaya Rhabdom changes in the shrimp, Palaemonetes , 1976, Cell and Tissue Research.

[50]  M F Land,et al.  Structure of the retinae of the principal eyes of jumping spiders (Salticidae: dendryphantinae) in relation to visual optics. , 1969, The Journal of experimental biology.

[51]  D. G. Beech,et al.  Handbook of Statistical Tables. , 1962 .