Continuum Micromechanics: Survey

The foundations of classical homogenization techniques, which aim at predicting the overall behavior of heterogeneous materials from that of their constituents, are reviewed. After introductory definitions and a methodological preamble, attention is focused on linear elasticity, for which the basic principles of estimating and bounding the overall properties are introduced and illustrated. In this context, special recourse is made for that to the solution of the inclusion and inhomogeneity problems as reported by Eshelby in 1957. Approaches proposed recently to account in a better way for the structural morphology of the considered materials are briefly mentioned. The case of linear elasticity with eigenstrains is then discussed: several applications, including heterogeneous thermoelasticity, can be investigated within this framework. Finally, outlines of nonlinear micromechanics are briefly reported from a historical point of view: from rate-independent elastoplasticity to nonlinear elasticity and viscoplasticity, examples of a fruitful interaction between the search for new estimates and the derivation of rigorous bounds are given and the crucial question of the description of intraphase heterogeneity is emphasized. Viscoelastic coupling and rate-dependent effects are briefly discussed in conclusion.

[1]  G. Sachs,et al.  Zur Ableitung einer Fließbedingung , 1929 .

[2]  E. H. Kerner The Elastic and Thermo-elastic Properties of Composite Media , 1956 .

[3]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[5]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[6]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[7]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[8]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[9]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[10]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[11]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[12]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  J. Mandel,et al.  Plasticité classique et viscoplasticité , 1972 .

[14]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[15]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[17]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  N. Laws,et al.  Self-consistent estimates for the viscoelastic creep compliances of composite materials , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[21]  E. Kroner Self-consistent scheme and graded disorder in polycrystal elasticity , 1978 .

[22]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[23]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[24]  G. Weng Self-Consistent Determination of Time-Dependent Behavior of Metals , 1981 .

[25]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[26]  T. Iwakuma,et al.  Finite elastic-plastic deformation of polycrystalline metals , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  J. Willis,et al.  Variational Principles for Inhomogeneous Non-linear Media , 1985 .

[28]  S. Nemat-Nasser,et al.  Rate-dependent, finite elasto-plastic deformation of polycrystals , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[30]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[31]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[32]  M. Berveiller,et al.  Elastoplasticité des métaux en grandes déformations : comportement global et évolution de la structure interne , 1990 .

[33]  A propos de l'assemblage de sphères composites de Hashin , 1991 .

[34]  S. V. Harren,et al.  The finite deformation of rate-dependent polycrystals—I. A self-consistent framework , 1991 .

[35]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[36]  S. Harren The finite deformation of rate-dependent polycrystals—II: A comparison of the self-consistent and Taylor methods , 1991 .

[37]  Analyse morphologique et approches variationnelles du comportement d'un milieu élastique hétérogène , 1991 .

[38]  Mark Kachanov,et al.  Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts , 1992 .

[39]  C. Stolz,et al.  Représentation spectrale en viscoélasticité linéaire des matériaux hétérogènes , 1993 .

[40]  André Zaoui,et al.  n-Layered inclusion-based micromechanical modelling , 1993 .

[41]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[42]  Pierre Suquet,et al.  Overall potentials and extremal surfaces of power law or ideally plastic composites , 1993 .

[43]  A. Zaoui,et al.  Self-consistent modelling of elastic-viscoplastic polycrystals , 1994 .

[44]  J. R. Willis,et al.  Upper and lower bounds for non-linear composite behaviour , 1994 .

[45]  A. Zaoui,et al.  Elastic behaviour of multiply coated fibre-reinforced composites , 1995 .

[46]  Gal deBotton,et al.  Variational estimates for the creep behaviour of polycrystals , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[47]  A generalized pattern-based self-consistent scheme , 1996 .

[48]  A. Zaoui,et al.  Morphologically representative pattern-based bounding in elasticity , 1996 .

[49]  Pierre M. Adler,et al.  The effective mechanical properties of random porous media , 1996 .

[50]  A Critical Evaluation for Various Nonlinear Extensions of the Self-Consistent Model , 1996 .

[51]  Pedro Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials , 1996 .

[52]  André Zaoui,et al.  Structural morphology and constitutive behaviour of microheterogeneous materials , 1997 .

[53]  A. Zaoui,et al.  Modelling Stress-Dependent Transformation Strains of Heterogeneous Materials , 1998 .

[54]  Renaud Masson,et al.  Self-consistent estimates for the rate-dependentelastoplastic behaviour of polycrystalline materials , 1999 .

[55]  A. Pouya,et al.  Linéarisation et homogénéisation en viscoélasticité , 1999 .

[56]  Teddy Fen-Chong,et al.  Micromechanical modelling of intracellular pressure-induced viscoelastic shrinkage of foams: application to expanded polystyrene , 1999 .

[57]  Michel Bornert,et al.  An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals , 2000 .

[58]  A. Zaoui,et al.  Structural morphology and relaxation spectra of viscoelastic heterogeneous materials , 2000 .

[59]  Renaud Masson,et al.  Micromechanics-based modeling of plastic polycrystals: an affine formulation , 2000 .

[60]  Samir Maghous,et al.  Évolution des propriétés élastiques en poroplasticité finie , 2000 .

[61]  A. Zaoui,et al.  Second-order estimates for the effective behaviour of viscoplastic polycrystalline materials , 2001 .

[62]  P. Gilormini,et al.  Variational self-consistent estimates for cubic viscoplastic polycrystals : the effects of grain anisotropy and shape , 2001 .