Recent advances of 2D materials in capacitive deionization

[1]  Yingcai Wang,et al.  Capacitive deionization of uranium mediated by dioxygen functionalities in the C = O = C = O segment of polyacrylic acid-functionalized graphene aerogel , 2024, Chemical Engineering Journal.

[2]  Ruoying Yang,et al.  Porous carbon flow-electrode derived from modified MOF-5 for capacitive deionization , 2024, Desalination.

[3]  Chun Xing Li,et al.  Aminated lignin-derived sponge carbon for the capacitive deionization of copper ions , 2024, Desalination.

[4]  Hao Zhang,et al.  Ultrathin nitrogen-doped carbon Ti3C2Tx-TiN heterostructure derived from ZIF-8 nanoparticles sandwiched MXene for high-performance capacitive deionization. , 2024, Journal of colloid and interface science.

[5]  Ziping Wang,et al.  Combining Bismuth nanoclusters embedded 3D carbon nanofiber Aerogels: Towards fast and ultra-durable faradic capacitive deionization , 2024, Chemical Engineering Journal.

[6]  Yingying Zhao,et al.  Fast and stable lithium extraction enabled by less-defective graphene supported LiMn2O4 conductive networks in hybrid capacitive deionization , 2024, Chemical Engineering Journal.

[7]  Gengen Peng,et al.  Unravelling the Enhanced Capacitive Desalination Behavior of Nanoneedle-like NiFe2O4 , 2023, Electrochimica Acta.

[8]  Yingying Zhao,et al.  Mesopore-enhanced graphene electrodes with modified hydrophilicity for ultrahigh capacitive deionization , 2023, Desalination.

[9]  Rongli Fang,et al.  Fully coated WS2 antioxidant film with mesoporous structure for enhancing the structural stability and CDI performance of Mxene , 2023, Desalination.

[10]  Huanwen Wang,et al.  Molten salt etching synthesis of Ti3C2Tx/Ni composites for highly efficient capacitive deionization , 2023, Desalination.

[11]  Jie Ma,et al.  Environmental applications and perspectives of flow electrode capacitive deionization (FCDI) , 2023, Separation and Purification Technology.

[12]  Xu Ge,et al.  Highly dispersed ultrasmall BiOCl nanoclusters on graphene sheets as high-performance anion-capture electrode for hybrid capacitive deionization , 2023, Desalination.

[13]  Yanmeng Cai,et al.  Heterostructure of NiCoAl-layered double hydroxide nanosheet arrays assembled on MXene coupled with CNT as conductive bridge for enhanced capacitive deionization , 2023, Chemical Engineering Journal.

[14]  Guangdi Nie,et al.  Pore engineering in robust carbon nanofibers for highly efficient capacitive deionization , 2023, Separation and Purification Technology.

[15]  Radwan Alfahel,et al.  A lamellar chitosan-lignosulfonate/MXene nanocomposite as binder-free electrode for high-performance capacitive deionization , 2023, Desalination.

[16]  Long-yu Zhang,et al.  Controllable Preparation of a N-Doped Hierarchical Porous Carbon Framework Derived from ZIF-8 for Highly Efficient Capacitive Deionization. , 2023, ACS Applied Materials and Interfaces.

[17]  Zhirou Wang,et al.  N, P-doping tuning the coordination structure of carbon electrode for efficiency of copper ions capacitance deionization , 2023, Desalination.

[18]  Longfei Ren,et al.  Efficient groundwater defluorination over a wide concentration gradient through capacitive deionization with a three-layer structured membrane coating electrode. , 2023, Journal of hazardous materials.

[19]  Xu Ge,et al.  Ultrafast air-plasma reduction-exfoliation of graphene oxide aerogel at room temperature for capacitive deionization , 2023, Carbon.

[20]  Pin Ma,et al.  Cationic segregation of Ca2Mn3O8 enabling high selectivity for fluoride ions through capacitive deionization , 2023, Desalination.

[21]  Han Yang,et al.  A mini review on metal-organic framework-based electrode materials for capacitive deionization. , 2023, Nanoscale.

[22]  S. Shahrokhian,et al.  Unraveling the Ion Uptake Capacitive Deionization of Sea- and Highly Saline-Water by Sulfur and Nitrogen Co-Doped Porous Carbon Modified with Molybdenum Sulfide. , 2023, ACS applied materials & interfaces.

[23]  W. Peng,et al.  Interfacial assembled porous bismuthene/Ti3C2Tx MXene heterostructure for highly efficient capacitive deionization. , 2023, Journal of colloid and interface science.

[24]  Kexun Li,et al.  Polyaniline-derived mesoporous carbon electrode for selective and efficient ammonium removal with in a flow-electrode capacitive deionization system , 2023, Journal of Environmental Chemical Engineering.

[25]  W. Son,et al.  Layered hydrated-titanium-oxide-laden reduced graphene oxide composite as a high-performance negative electrode for selective extraction of Li via membrane capacitive deionization. , 2023, Journal of colloid and interface science.

[26]  Jose L. Mendoza-Cortes,et al.  Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. , 2023, ACS nano.

[27]  Bichao Wu,et al.  Enhanced Pseudo-Capacitance Process in Nanoarchitectural Layered Double Hydroxide Nanoarrays Hollow Nanocages for Improved Capacitive Deionization Performance. , 2023, ACS applied materials & interfaces.

[28]  Ting Lu,et al.  Dual-confinement effect in metal oxide nanoparticles/MXene-reduced graphene oxide for high capacitive deionization performance , 2023, Desalination.

[29]  Meng Li,et al.  Prussian blue analogue derived 3D hollow LiCoMnO4 nanocube for selective extraction of lithium by pseudo-capacitive deionization , 2023, Desalination.

[30]  Najat Maher Nemer Aldaqqa,et al.  Electrode materials for desalination of water via capacitive deionization. , 2023, Angewandte Chemie.

[31]  L. Zou,et al.  Hybrid pseudocapacitive sodium titanate/rGO and MXene/rGO nanocomposite electrodes in capacitive deionization , 2023, Desalination.

[32]  Fei Yu,et al.  Two-Dimensional Hetero-structured TiO2/TiS2 Nanosheets for Capacitive Deionization , 2023, Chemistry of Materials.

[33]  Jiapeng Liu,et al.  Vertically Aligned Bismuthene Nanosheets on MXene for High-Performance Capacitive Deionization. , 2023, ACS nano.

[34]  Yang Li,et al.  Enhancing the electronic and ionic transport of flow-electrode capacitive deionization by hollow mesoporous carbon nanospheres , 2023, Desalination.

[35]  Jang-kun Song,et al.  MOF-derived 3D MnO2@graphene/CNT and Ag@graphene/CNT hybrid electrode materials for dual-ion selective pseudocapacitive deionization , 2023, Desalination.

[36]  Huanwen Wang,et al.  The Effect of Electrode Thickness and Electrode/Electrolyte Interface on the Capacitive Deionization Behavior of the Mxene Electrodes , 2023, SSRN Electronic Journal.

[37]  Xianfen Wang,et al.  Electrocapacitive Deionization: Mechanisms, Electrodes, and Cell Designs , 2023, Advanced Functional Materials.

[38]  F. Cheng,et al.  Freeing Fluoride Termination of Ti3C2Tx via Electrochemical Etching for High-Performance Capacitive Deionization. , 2023, ACS applied materials & interfaces.

[39]  Zheng Wang,et al.  The origin of selective electro-adsorption of cations by few-layered 2D MXene electrode , 2023, Desalination.

[40]  Zhike He,et al.  Ti3C2Tx MXene@carbon dots hybrid microflowers as a binder-free electrode material toward high capacity capacitive deionization , 2023, Desalination.

[41]  Rui Ma,et al.  Preparation of high performance porous carbon by microwave synergistic nitrogen/phosphorus doping for efficient removal of Cu2+ via capacitive deionization. , 2023, Environmental research.

[42]  Huaiguo Xue,et al.  Design of Uniform Hollow Carbon Nanoarchitectures: Different Capacitive Deionization between the Hollow Shell Thickness and Cavity Size , 2023, Advanced science.

[43]  N. Baig Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions , 2022, Composites Part A: Applied Science and Manufacturing.

[44]  Jie Ma,et al.  Ti3C2‐MXene Partially Derived Hierarchical 1D/2D TiO2/Ti3C2 Heterostructure Electrode for High‐Performance Capacitive Deionization , 2022, Advanced science.

[45]  Shuang Song,et al.  Hierarchical MXene/Polypyrrole-Decorated Carbon Nanofibers for Asymmetrical Capacitive Deionization. , 2022, ACS applied materials & interfaces.

[46]  Aijun Lin,et al.  Interfacial Charge-Modulated Multifunctional MoS2/Ti3C2Tx Penetrating Electrode for High-Efficiency Freshwater Production. , 2022, ACS nano.

[47]  Huanwen Wang,et al.  Rationally designing a Ti3C2Tx/CNTs-Co9S8 heterostructure as a sulfur host with multi-functionality for high-performance lithium-sulfur batteries. , 2022, Nanoscale.

[48]  R. Doong,et al.  Architectures of flower-like MoS2 nanosheet coated N-doped carbon sphere electrode materials for enhanced capacitive deionization , 2022, Desalination.

[49]  Huanwen Wang,et al.  Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization. , 2022, Nanoscale.

[50]  Zhiyong Lu,et al.  Facile fabrication of intercalation-type pseudocapacitive S-Ti3C2T /PANI/F-Ti3C2T cathode for asymmetric capacitive deionization , 2022, Desalination.

[51]  L. Zou,et al.  Review on 2D MXene and graphene electrodes in capacitive deionization , 2022, Environmental Technology & Innovation.

[52]  Huanwen Wang,et al.  Rational construction of 2D/2D Ti3C2Tx/NiCo MOF heterostructure for highly efficient Li+ storage , 2022, Electrochimica Acta.

[53]  Lijun Gao,et al.  Surfactant-assisted self-assembly of flower-like ultrathin vanadium disulfide nanosheets for enhanced hybrid capacitive deionization. , 2022, Journal of colloid and interface science.

[54]  Z. Ji,et al.  Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage , 2022, Desalination.

[55]  S. A. Mozaffari,et al.  Porous 3D-graphene functionalized with MnO2 nanospheres and NiO nanoparticles as highly efficient electrodes for asymmetric capacitive deionization: Evaluation by impedance-derived capacitance spectroscopy , 2022, Electrochimica Acta.

[56]  S. Boles,et al.  Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems , 2022, Nano Research.

[57]  Zehao Zhang,et al.  Reconfiguring the Interface Charge of Co@Carbon Polyhedron for Enhanced Capacitive Deionization , 2022, Chemical Engineering Journal.

[58]  Ting Lu,et al.  In situ constructed Ti 3 C 2 T x MXene /polypyrrole composite with enhanced sodium storage capacity for efficient hybrid capacitive deionization , 2022, Journal of Polymer Science.

[59]  Jiapeng Liu,et al.  Constructing titanium carbide MXene/reduced graphene oxide superlattice heterostructure via electrostatic self-assembly for high-performance capacitive deionization. , 2022, Journal of colloid and interface science.

[60]  Y. Yamauchi,et al.  Heterointerface optimization in a covalent organic framework-on-MXene for high-performance capacitive deionization of oxygenated saline water. , 2022, Materials horizons.

[61]  Han Yang,et al.  Size and composition regulated sodium vanadium fluorophosphate wrapped in rGO as an efficient cathode for brackish and seawater desalination , 2022, Desalination.

[62]  Seungkwan Hong,et al.  Enhanced capacitive deionization using a biochar-integrated novel flow-electrode , 2022, Desalination.

[63]  Liqing Li,et al.  Carbon aerogel electrode for excellent dephosphorization via flow capacitive deionization , 2022, Desalination.

[64]  Yangfang Sun,et al.  In-situ construction of 3D hierarchical MoS2/CoS2@TiO2 nanotube hybrid electrodes with superior capacitive performance toward water treatment , 2022, Chemical Engineering Journal.

[65]  Jixiao Wang,et al.  3D Heterostructure Constructed by Few-Layered MXenes with a MoS2 Layer as the Shielding Shell for Excellent Hybrid Capacitive Deionization and Enhanced Structural Stability. , 2022, ACS applied materials & interfaces.

[66]  Jixiao Wang,et al.  Flexible structural engineering of PPy-NiCo-LDH@Mxene for improved capacitive deionization and efficient hard water softening process , 2022, Separation and Purification Technology.

[67]  Lei Chen,et al.  Ferroferric oxide@titanium carbide MXene heterostructure with enhanced sodium storage ability for efficient hybrid capacitive deionization , 2022, Desalination.

[68]  Chang Zhang,et al.  Removal of chloride from water and wastewater: Removal mechanisms and recent trends. , 2022, The Science of the total environment.

[69]  A. Boretti,et al.  MXene pseudocapacitive electrode material for capacitive deionization , 2022, Chemical Engineering Journal.

[70]  G. Wang,et al.  Three-dimensional hierarchical Na3Fe2(PO4)3/C with superior and fast sodium uptake for efficient hybrid capacitive deionization , 2021, Desalination.

[71]  H. Yang,et al.  Electrochemically activated layered manganese oxide for selective removal of calcium and magnesium ions in hybrid capacitive deionization , 2021, Desalination.

[72]  Haoli Jiang,et al.  A novel “butter-sandwich” Ti3C2Tx/PANI/PPY electrode with enhanced adsorption capacity and recyclability toward asymmetric capacitive deionization , 2021 .

[73]  D. Aurbach,et al.  Anions-capture materials for electrochemical electrode deionization: Mechanism, performance, and development prospects , 2021, Desalination.

[74]  Jianmao Yang,et al.  Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. , 2021, Journal of colloid and interface science.

[75]  Xun Yuan,et al.  Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization. , 2021, Journal of colloid and interface science.

[76]  Jixiao Wang,et al.  Well-dispersed few-layered MoS2 connected with robust 3D conductive architecture for rapid capacitive deionization process and its specific ion selectivity , 2021, Desalination.

[77]  Kun Zhou,et al.  Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. , 2021, Nanoscale.

[78]  Y. Yamauchi,et al.  Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. , 2021, Angewandte Chemie.

[79]  L. Pan,et al.  Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. , 2021, Journal of colloid and interface science.

[80]  Ting Lu,et al.  Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization , 2021, Chemical Engineering Journal.

[81]  M. Ates,et al.  Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review , 2021, Ionics.

[82]  Y. Yamauchi,et al.  Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization , 2021, Chemical Engineering Journal.

[83]  A. Abdullah,et al.  Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials. , 2021, ACS nano.

[84]  Shuhong Yu,et al.  Biomimetic Nacrelike Membranes for Selective Ion Transport , 2021, ACS Central Science.

[85]  Dianzeng Jia,et al.  Carbon nanofiber@ZIF-8 derived carbon nanosheet composites with a core–shell structure boosting capacitive deionization performance , 2021, Journal of Materials Chemistry A.

[86]  Bingbing Chen,et al.  High-performance capacitive deionization using 3D porous Ti3C2T with improved conductivity , 2021, Journal of Electroanalytical Chemistry.

[87]  Y. Yamauchi,et al.  Graphene–carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization , 2021, Chemical science.

[88]  Wei-feng Liu,et al.  Magnetic graphene oxide surface lithium ion-imprinted material towards lithium extraction from salt lake , 2021 .

[89]  Haibo Li,et al.  Promoting the uptake of chloride ions by ZnCo–Cl layered double hydroxide electrodes for enhanced capacitive deionization , 2021 .

[90]  Silu Huo,et al.  3D-ordered honeycomb-like nitrogen-doped micro–mesoporous carbon for brackish water desalination using capacitive deionization , 2021 .

[91]  Xiangang Hu,et al.  Formation of S defects in MoS2-coated wood for high-efficiency seawater desalination , 2021, Environmental Science: Nano.

[92]  Haibo Li,et al.  Synthesis of lithium vanadate/reduced graphene oxide with strong coupling for enhanced capacitive extraction of lithium ions , 2021 .

[93]  Cong-jie Gao,et al.  Bismuth Nanoparticle-Embedded Porous Carbon Frameworks as a High-Rate Chloride Storage Electrode for Water Desalination. , 2021, ACS applied materials & interfaces.

[94]  Fei Yu,et al.  Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity. , 2021, Journal of colloid and interface science.

[95]  Yihe Miao,et al.  Enhanced capacitive deionization of defect-containing MoS2/graphene composites through introducing appropriate MoS2 defect , 2021, Electrochimica Acta.

[96]  Xihui Zhang,et al.  Novel MoS2/NOMC electrodes with enhanced capacitive deionization performances , 2021 .

[97]  Dong Yan,et al.  Tungsten disulfide-reduced GO/CNT aerogel: a tuned interlayer spacing anode for efficient water desalination , 2021 .

[98]  P. M. Biesheuvel,et al.  Recent advances in ion selectivity with capacitive deionization , 2021, Energy & Environmental Science.

[99]  T. Waite,et al.  Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. , 2021, Environmental science & technology.

[100]  Rohini M. de Silva,et al.  Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology , 2021, Nanoscale advances.

[101]  Zhen-guo Wu,et al.  Core–Shell MOF@COF Motif Hybridization: Selectively Functionalized Precursors for Titanium Dioxide Nanoparticle-Embedded Nitrogen-Rich Carbon Architectures with Superior Capacitive Deionization Performance , 2021 .

[102]  K. Liao,et al.  2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination , 2021 .

[103]  Chengzhi Hu,et al.  Selective electrosorption of Ca2+ by MXene cathodes coupled with NiAl-LMO anodes through ion intercalation. , 2021, Journal of colloid and interface science.

[104]  Y. Fei,et al.  Structurally and chemically engineered graphene for capacitive deionization , 2021 .

[105]  Shaoxian Song,et al.  Oxygen-incorporated molybdenum disulfide nanosheets as electrode for enhanced capacitive deionization , 2020 .

[106]  Jie Ma,et al.  In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability , 2020 .

[107]  H. Shon,et al.  A review on lithium recovery using electrochemical capturing systems , 2020 .

[108]  R. Zhao,et al.  Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. , 2020, Journal of colloid and interface science.

[109]  W. Jin,et al.  Simultaneous and precise recovery of lithium and boron from salt lake brine by capacitive deionization with oxygen vacancy-rich CoP/Co3O4-graphene aerogel , 2020 .

[110]  H. Yang,et al.  A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization , 2020 .

[111]  Yubo Zhao,et al.  Core-shell nanoparticles of Prussian blue analogues as efficient capacitive deionization electrodes for brackish water desalination , 2020, Separation and Purification Technology.

[112]  Guofu Zhou,et al.  Faradaic Electrodes Open a New Era for Capacitive Deionization , 2020, Advanced science.

[113]  Jie Ma,et al.  Highly flexible, self-healable and conductive poly(vinyl alcohol)/Ti3C2Tx MXene film and it’s application in capacitive deionization , 2020 .

[114]  Jie Ma,et al.  A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization , 2020, Nano Research.

[115]  Yuan Li,et al.  Free-standing 3D alkalized Ti3C2Tx/Ti3C2Tx nanosheet membrane electrode for highly efficient and stable desalination in hybrid capacitive deionization , 2020 .

[116]  Bingbing Chen,et al.  Subsize Ti3C2T derived from molten-salt synthesized Ti3AlC2 for enhanced capacitive deionization , 2020 .

[117]  P. Liang,et al.  Hybrid Metal-Organic Framework-Reduced Graphene Oxide Nanomaterial for Selective Removal of Chromate from Water in an Electrochemical Process. , 2020, Environmental science & technology.

[118]  V. Presser,et al.  Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport , 2020, Advanced science.

[119]  Y. Gogotsi,et al.  Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[120]  Lijun Gao,et al.  Graphene Oxide-Tuned MoS2 with an Expanded Interlayer for Efficient Hybrid Capacitive Deionization , 2020 .

[121]  Yuping Li,et al.  Selective removal of chloride ions by bismuth electrode in capacitive deionization , 2020 .

[122]  Gang Wang,et al.  Ion removal performance and enhanced cyclic stability of SnO2/CNT composite electrode in hybrid capacitive deionization , 2020 .

[123]  W. Ni,et al.  Carbon nanotubes in-situ cross-linking the activated carbon electrode for high-performance capacitive deionization , 2020 .

[124]  V. Presser,et al.  MXene/activated carbon hybrid capacitive deionization for permselective ion removal at low and high salinity. , 2020, ACS applied materials & interfaces.

[125]  L. Pan,et al.  Rocking-chair capacitive deionization with flow-through electrodes , 2020 .

[126]  M. Ye,et al.  Hierarchical and Self-Supported Vanadium Disulfide Microstructures@Graphite Paper: An Advanced Electrode for Efficient and Durable Asymmetric Capacitive Deionization , 2020 .

[127]  Xihui Zhang,et al.  Capacitive deionization with MoS2/g-C3N4 electrodes , 2020 .

[128]  Shaoxian Song,et al.  Hydrophilic MoS2/polydopamine (PDA) nanocomposites as the electrode for enhanced capacitive deionization , 2020 .

[129]  L. Wang,et al.  Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity , 2020 .

[130]  Juanjuan Gao,et al.  Significantly enhanced capacitance deionization performance by coupling activated carbon with triethyltetramine-functionalized graphene , 2020 .

[131]  Jie Ma,et al.  An All-MXene-Based Integrated Membrane Electrode Constructed using Ti3C2Tx as an Intercalating Agent for High Performance Desalination. , 2020, Environmental science & technology.

[132]  Z. Sha,et al.  Efficient Lithium Extraction from Brine Using a Three-Dimensional Nanostructured Hybrid Inorganic-Gel Framework Electrode , 2020, ACS Sustainable Chemistry & Engineering.

[133]  Bingbing Chen,et al.  MXene as a Cation-selective Cathode Material for Asymmetric Capacitive Deionization. , 2020, ACS applied materials & interfaces.

[134]  Ihsanullah Ihsanullah,et al.  Potential of MXenes in Water Desalination: Current Status and Perspectives , 2020, Nano-micro letters.

[135]  Y. Gogotsi,et al.  Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2T -MXene membrane capacitive deionization system , 2020 .

[136]  G. Wang,et al.  NH4V4O10/rGO Composite as a high-performance electrode material for hybrid capacitive deionization , 2020 .

[137]  T. Waite,et al.  Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. , 2020, Water research.

[138]  Dengsong Zhang,et al.  Efficient Capacitive Deionization of Saline Water by an Integrated Tin disulfide Nanosheet@Graphite Paper Electrode via an in Situ Growth Strategy , 2020 .

[139]  Jiho Lee,et al.  Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. , 2019, Journal of colloid and interface science.

[140]  K. Zhou,et al.  Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications , 2019, Journal of Materials Chemistry A.

[141]  Liyi Shi,et al.  Capacitive deionization of saline water using graphene nanosphere decorated N-doped layered mesoporous carbon frameworks , 2019, Environmental Science: Nano.

[142]  Tingting Yan,et al.  Capacitive Deionization of Saline Water by Using MoS2-Graphene Hybrid Electrodes with High Volumetric Adsorption Capacity. , 2019, Environmental science & technology.

[143]  Xiaojun Liu,et al.  Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization , 2019, Desalination.

[144]  G. Wang,et al.  Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction , 2019, Environmental Science: Nano.

[145]  G. Wang,et al.  Facile Fabrication of NiCoAl-LMO/Graphene Nanosheets for Efficient Capacitive Deionization Defluorination. , 2019, ACS applied materials & interfaces.

[146]  Tao Yang,et al.  Three-Dimensional Nanoarchitecture of Carbon Nanotube-Interwoven Metal–Organic Frameworks for Capacitive Deionization of Saline Water , 2019, ACS Sustainable Chemistry & Engineering.

[147]  Ying Wang,et al.  Faradaic reactions in capacitive deionization for desalination and ion separation , 2019, Journal of Materials Chemistry A.

[148]  Zisheng Zhang,et al.  A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization , 2019, Journal of Materials Chemistry A.

[149]  H. Yang,et al.  Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system. , 2019, Nanoscale.

[150]  Liang Chang,et al.  3D Channel-structured graphene as efficient electrodes for capacitive deionization. , 2019, Journal of colloid and interface science.

[151]  Chung-Yul Yoo,et al.  Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. , 2019, Water research.

[152]  H. Yang,et al.  Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes. , 2019, Small.

[153]  H. Yang,et al.  A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. , 2019, ACS applied materials & interfaces.

[154]  Indumathi M. Nambi,et al.  Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system , 2019, Desalination.

[155]  Hui Ying Yang,et al.  Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. , 2019, ACS applied materials & interfaces.

[156]  Ying Wang,et al.  Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. , 2019, Nano letters.

[157]  Tie Gao,et al.  Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance , 2019, Desalination.

[158]  Li-xin Song,et al.  Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization , 2018, Ionics.

[159]  Juanjuan Gao,et al.  Highly pore-expanded benzidine-functionalized graphene framework for enhanced capacitive deionization , 2018, Desalination.

[160]  Shaoxian Song,et al.  Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water , 2018, Desalination.

[161]  Do-Hwan Nam,et al.  Electrochemical Desalination Using Bi/BiOCl Electrodialysis Cells , 2018, ACS Sustainable Chemistry & Engineering.

[162]  Bryan W. Byles,et al.  Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. , 2018, ACS applied materials & interfaces.

[163]  Fan Zhang,et al.  Lithium Metal Extraction from Seawater , 2018, Joule.

[164]  W. Ni,et al.  Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes. , 2018, ACS applied materials & interfaces.

[165]  Chengzhong Yu,et al.  Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization , 2018 .

[166]  Tie Gao,et al.  Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity , 2018, Chemical Engineering Journal.

[167]  Y. Gogotsi,et al.  Porous Cryo-Dried MXene for Efficient Capacitive Deionization , 2018 .

[168]  G. Wang,et al.  Calcined MgAl-Layered Double Hydroxide/Graphene Hybrids for Capacitive Deionization , 2018 .

[169]  H. Yang,et al.  Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination , 2018 .

[170]  V. Presser,et al.  Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation , 2018 .

[171]  Volker Presser,et al.  Water Desalination with Energy Storage Electrode Materials , 2018 .

[172]  Jeffrey J. Urban,et al.  Emerging Scientific and Engineering Opportunities within the Water-Energy Nexus , 2017 .

[173]  Volker Presser,et al.  Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination , 2017 .

[174]  Fuming Chen,et al.  Dual-ions electrochemical deionization: a desalination generator , 2017 .

[175]  D. Fray,et al.  Controlled electrochemical doping of graphene-based 3D nanoarchitecture electrodes for supercapacitors and capacitive deionisation. , 2017, Nanoscale.

[176]  H. Yang,et al.  Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination , 2017, Desalination.

[177]  Volker Presser,et al.  Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide , 2017 .

[178]  H. Yang,et al.  A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes. , 2017, Nanoscale.

[179]  Kimberly M. Papadantonakis,et al.  Principles and implementations of electrolysis systems for water splitting , 2016 .

[180]  Nidal Hilal,et al.  Application of Capacitive Deionisation in water desalination: A review , 2014 .

[181]  Moon Hee Han,et al.  Desalination via a new membrane capacitive deionization process utilizing flow-electrodes , 2013 .

[182]  S. Avery,et al.  Chromate toxicity and the role of sulfur. , 2011, Metallomics : integrated biometal science.

[183]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[184]  Yue Wang,et al.  Large-surface-area porous monolith of graphene for electrochemical capacitive deionization , 2023, Journal of Materials Chemistry A.

[185]  Bin Zhao,et al.  Core-Shell 2D Nanoarchitectures: Engineering N, P-doped Graphitic Carbon/MXene Heterostructures for Superior Capacitive Deionization , 2023, Journal of Materials Chemistry A.

[186]  Zaheen Ullah Khan,et al.  3D Graphene-supported N-doped Hierarchically Porous Carbon for Capacitive Deionization of Saline Water , 2023, Environmental Science: Nano.

[187]  Huanwen Wang,et al.  Constructing MXene hydrogels and aerogels for rechargeable supercapacitors and batteries , 2023, Journal of Materials Chemistry C.

[188]  Fei Yu,et al.  Chinese Dumpling-Like NaTi2(PO4)3/MXene@Reduced Graphene Oxide for Capacitive Deionization with High Capacity and Good Cycling Stability , 2023, Journal of Materials Chemistry A.

[189]  Chongxing Liu,et al.  Green double organic salt activation strategy for one-step synthesis of N-doped 3D hierarchical porous carbon for capacitive deionization , 2023, Chemical Engineering Journal.

[190]  Weizhai Bao,et al.  Dimensional optimization enable high-performance capacitive deionization , 2022, Journal of Materials Chemistry A.

[191]  Fei Yu,et al.  Graphene-Assisted Ti3C2 MXene-Derived Ultrathin Sodium Titanate for Capacitive Deionization with Excellent Rate Performance and Long Cycling Stability , 2022, Journal of Materials Chemistry A.

[192]  Jian-er Zhou,et al.  The structural evolution of 3D-RGO with reduction temperature and its effect on capacitive deionization performance , 2022, Environmental Science: Water Research & Technology.

[193]  Lianzhou Wang,et al.  Interconnected N-doped MXene Spherical Shells for Highly Efficient Capacitive Deionization , 2021, Environmental Science: Nano.

[194]  L. Pan,et al.  Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization , 2021 .

[195]  Wenjun Yan,et al.  An electroactive ion exchange hybrid film with collaboratively-driven ability for electrochemically-mediated selective extraction of chloride ions , 2021 .

[196]  Yongsheng Zhang,et al.  Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization , 2020 .

[197]  Xia Cao,et al.  Chemically exfoliated MoS2 for capacitive deionization of saline water , 2017 .