Design optimization of a Delta-like parallel robot through global stiffness performance evaluation

This paper presents the design optimization of a Delta-like robot manipulator with respect to multiple global stiffness objectives. For this purpose, a systematic elasto-geometrical modeling method is used to derive the analytical manipulator stiffness models by taking into account their link and joint compliances. The models are then involved within a statistically sensitivity analysis of the influence of the geometric parameters on four global indices that describe the structure stiffness over the workspace. Multi-Objective Genetic Algorithm, i.e. Pareto-optimization, is taken as the appropriate framework for the definition and the solution of the addressed multi-objective optimization problem. Our approach is original in the sense that it is systematic and it can be applied to any serial and parallel manipulators for which stiffness is a critical issue.

[1]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[2]  Lung-Wen Tsai,et al.  Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators , 1999 .

[3]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[4]  Joseph Duffy,et al.  Statics and Kinematics with Applications to Robotics , 1996 .

[5]  J. Angeles,et al.  Optimum architecture design of platform manipulators , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[6]  Jürgen Hesselbach,et al.  Elastodynamic optimization of parallel kinematics , 2005, IEEE International Conference on Automation Science and Engineering, 2005..

[7]  Jeha Ryu,et al.  New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators , 2003, IEEE Trans. Robotics Autom..

[8]  Vincent Hayward,et al.  Calibration of a parallel robot using multiple kinematic closed loops , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  Chia-Hsiang Menq,et al.  Statistical measure and characterization of robot errors , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  Gloria J. Wiens,et al.  Structural Dynamics and System Identification of Parallel Kinematic Machines , 2006 .

[11]  Zvi S. Roth,et al.  Fundamentals of Manipulator Calibration , 1991 .

[12]  R. Clavel,et al.  A Fast Robot with Parallel Geometry , 1988 .

[13]  Joseph Duffy Statics and kinematics with applications to robotics: Preface , 1996 .

[14]  Joseph Duffy,et al.  Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement , 1991 .

[15]  Alexei Lisounkin,et al.  Modeling closed-loop mechanisms in robots for purposes of calibration , 1997, IEEE Trans. Robotics Autom..

[16]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[17]  Yu Sun,et al.  Observability index selection for robot calibration , 2008, 2008 IEEE International Conference on Robotics and Automation.

[18]  L. W. Tsai,et al.  Robot Analysis: The Mechanics of Serial and Parallel Ma-nipulators , 1999 .

[19]  野間 春生,et al.  Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 参加報告 , 1997 .

[20]  Bijan Shirinzadeh,et al.  Enhanced stiffness modeling, identification and characterization for robot manipulators , 2005, IEEE Transactions on Robotics.

[21]  Dominique Deblaise,et al.  A systematic analytical method for PKM stiffness matrix calculation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Chia-Hsiang Menq,et al.  Experimental study of observability of parameter errors in robot calibration , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[23]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[24]  Patrick Maurine,et al.  Elasto-geometrical modelling of closed-loop industrial robots used for machining applications , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  Marco Ceccarelli,et al.  Comparison of indices for stiffness performance evaluation , 2010 .

[26]  John M. Hollerbach,et al.  The noise amplification index for optimal pose selection in robot calibration , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[27]  Jean-Pierre Merlet,et al.  Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots , 2005, ISRR.

[28]  Volkan Patoglu,et al.  A Multi-criteria Design Optimization Framework for Haptic Interfaces , 2008, 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[29]  Raffaele Di Gregorio Determination of Singularities in Delta-Like Manipulators , 2004, Int. J. Robotics Res..

[30]  Clément Gosselin,et al.  Parametric Stiffness Analysis of the Orthoglide , 2004, ArXiv.