Nonlinear finite element analysis of shells: Part I. three-dimensional shells

Abstract A nonlinear finite element formulation is presented for the three-dimensional quasistatic analysis of shells which accounts for large strain and rotation effects, and accommodates a fairly general class of nonlinear, finite-deformation constitutive equations. Several features of the developments are noteworthy, namely: the extension of the selective integration procedure to the general nonlinear case which, in particular, facilitates the development of a ‘heterosis-type’ nonlinear shell element; the presentation of a nonlinear constitutive algorithm which is ‘incrementally objective’ for large rotation increments, and maintains the zero normal-stress condition in the rotating stress coordinate system; and a simple treatment of finite-rotational nodal degrees-of-freedom which precludes the appearance of zero-energy in-plane rotational modes. Numerical results indicate the good behavior of the elements studied.

[1]  T. Belytschko,et al.  Applications of higher order corotational stretch theories to nonlinear finite element analysis , 1979 .

[2]  J. Z. Zhu,et al.  The finite element method , 1977 .

[3]  Thomas J. R. Hughes,et al.  Recent developments in computer methods for structural analysis , 1980 .

[4]  J. H. Argyris,et al.  Recent advances in matrix methods of structural analysis , 1964 .

[5]  J. Nagtegaal,et al.  Some computational aspects of elastic-plastic large strain analysis , 1981 .

[6]  John Argyris,et al.  A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems , 1977 .

[7]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[8]  Thomas J. R. Hughes,et al.  A LARGE DEFORMATION FORMULATION FOR SHELL ANALYSIS BY THE FINITE ELEMENT METHOD , 1981 .

[9]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[10]  Ekkehard Ramm,et al.  Linear and nonlinear stability analysis of cylindrical shells , 1980 .

[11]  J. Hallquist,et al.  Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation , 1979 .

[12]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[13]  O. C. Zienkiewicz,et al.  A simple and efficient element for axisymmetric shells , 1977 .

[14]  C. L. Morgan,et al.  Continua and Discontinua , 1916 .

[15]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[16]  Gerald Wempner,et al.  Finite elements, finite rotations and small strains of flexible shells , 1969 .

[17]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[18]  D. W. Scharpf,et al.  On large displacement-small strain analysis of structures with rotational degrees of freedom , 1978 .

[19]  Thomas J. R. Hughes,et al.  Consistent linearization in mechanics of solids and structures , 1978 .

[20]  Geir Horrigmoe,et al.  Finite element instability analysis of free-form shells , 1977 .

[21]  J. S. Przemieniecki,et al.  Large deflections of diamond-shaped frames , 1966 .

[22]  Thomas J. R. Hughes,et al.  ″HETEROSIS″ FAMILY OF PLATE FINITE ELEMENTS. , 1979 .

[23]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[24]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[25]  H. Parisch,et al.  Geometrical nonlinear analysis of shells , 1978 .

[26]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[27]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[28]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[29]  Klaus-Jürgen Bathe,et al.  SAP 4: A Structural Analysis Program for Static and Dynamic Response of Linear Systems , 1974 .

[30]  S. Timoshenko Theory of Elastic Stability , 1936 .

[31]  R. D. Wood,et al.  GEOMETRICALLY NONLINEAR FINITE ELEMENT ANALYSIS OF BEAMS, FRAMES, ARCHES AND AXISYMMETRIC SHELLS , 1977 .

[32]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[33]  B. O'neill Elementary Differential Geometry , 1966 .

[34]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[35]  Richard H. Gallagher,et al.  Finite Element Analysis: Fundamentals , 1975 .

[36]  Tadahiko Kawai,et al.  Analysis of large deflection of plates by the finite element method , 1969 .

[37]  Ekkehard Ramm,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DISPLACEMENT AND LARGE STRAIN ANALYSIS , 1973 .

[38]  R. D. Krieg,et al.  Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model , 1977 .

[39]  T. Belytschko,et al.  Large displacement, transient analysis of space frames , 1977 .

[40]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[41]  John Argyris,et al.  Post-buckling finite element analysis of circular cylinders under end load , 1978 .

[42]  Worsak Kanok-Nukulchai,et al.  A simple and efficient finite element for general shell analysis , 1979 .

[43]  J. F. Mescall,et al.  Large Deflections of Spherical Shells Under Concentrated Loads , 1965 .

[44]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[45]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[46]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[47]  R. F. Kulak,et al.  Accurate Numerical Solutions for Elastic-Plastic Models , 1979 .