An Information-Theoretic Approach to Time Bounds for On-Line Computation

Abstract Static, descriptional complexity (program size) can be used to obtain lower bounds on dynamic, computational complexity (such as running time). We discuss the approach and use it to obtain lower time bounds for on-line simulation of one abstract storage unit by another. Our main results show that more points of access into multidimensional or tree-shaped storage can save significant time.

[1]  Arnold L. Rosenberg,et al.  Real-Time Simulation of Multihead Tape Units , 1972, JACM.

[2]  Joel I. Seiferas,et al.  New Real-Time Simulations of Multihead Tape Units , 1981, J. ACM.

[3]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[4]  Joel I. Seiferas,et al.  New Real-Time Simulations of Multihead Tape Units , 1977, JACM.

[5]  Michael C. Loui Simulations among Multidimensional Turing Machines (Preliminary Version) , 1981, FOCS.

[6]  S. Rao Kosaraju,et al.  Real-time simulation of concatenable double-ended queues by double-ended queues (Preliminary Version) , 1979, STOC.

[7]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[8]  Wolfgang J. Paul,et al.  Kolmogorov complexity and lower bounds , 1979, FCT.

[9]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[10]  F. C. Hennie,et al.  On-Line Turing Machine Computations , 1966, IEEE Trans. Electron. Comput..

[11]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[12]  Richard Edwin Stearns,et al.  Two-Tape Simulation of Multitape Turing Machines , 1966, JACM.

[13]  M. Fischer,et al.  AN IMPROVED OVERLAP ARGUMENT FOR ON-LINE MULTIPLICATION , 1974 .

[14]  M. Rabin Real time computation , 1963 .

[15]  Journal of the Association for Computing Machinery , 1961, Nature.

[16]  Wolfgang J. Paul,et al.  On Time versus Space II. (Turing Machines) , 1981, J. Comput. Syst. Sci..