Off-axis digital hologram reconstruction: some practical considerations.

Holographic rendering of off-axis intensity digital holograms is discussed. A review of some of the main numerical processing methods, based either on the Fourier transform interpretation of the propagation integral or on its linear system counterpart, is reported. Less common methods such as adjustable magnification reconstruction schemes and Fresnelet decomposition are presented and applied to the digital treatment of off-axis holograms. The influence of experimental parameters on the classical hologram reconstruction methods is assessed, offering guidelines for optimal image rendering regarding the hologram recording conditions.

[1]  Michael Atlan,et al.  Video-rate laser Doppler vibrometry by heterodyne holography. , 2011, Optics letters.

[2]  Michael Unser,et al.  Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[4]  Thierry Blu,et al.  Non-linear Fresnelet approximation for interference term suppression in digital holography , 2003, SPIE Optics + Photonics.

[5]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[6]  U. Schnars,et al.  Direct recording of holograms by a CCD target and numerical reconstruction. , 1994, Applied optics.

[7]  Emmett N. Leith,et al.  Wavefront Reconstruction with Continuous-Tone Objects* , 1963 .

[8]  H J Tiziani,et al.  Pulsed digital holography for deformation measurements on biological tissues. , 2000, Applied optics.

[9]  Ferréol Soulez,et al.  Inverse-problem approach for particle digital holography: accurate location based on local optimization. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Ye Pu,et al.  Holographic particle image velocimetry: from film to digital recording , 2004 .

[11]  R. W. Lawrence,et al.  Digital Image Formation From Electronically Detected Holograms , 1967 .

[12]  Loïc Denis,et al.  Inline hologram reconstruction with sparsity constraints. , 2009, Optics letters.

[13]  Karl A. Stetson,et al.  Interferometric Vibration Analysis by Wavefront Reconstruction , 1965 .

[14]  Jorge Garcia-Sucerquia,et al.  Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform. , 2010, Applied optics.

[15]  Catherine Yourassowsky,et al.  Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis. , 2006, Applied optics.

[16]  K. Matsushima Shifted angular spectrum method for off-axis numerical propagation. , 2010, Optics express.

[17]  W Xu,et al.  Digital in-line holography for biological applications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Gabor Microscopy by reconstructed wave-fronts , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  J. Olivo-Marin,et al.  Off-axis compressed holographic microscopy in low-light conditions. , 2011, Optics letters.

[20]  Tomoyoshi Ito,et al.  Real-time digital holographic microscopy using the graphic processing unit. , 2008, Optics express.

[21]  G. Pedrini,et al.  High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms. , 2008, Applied optics.

[22]  Ichirou Yamaguchi,et al.  Vibration Analysis by Phase Shifting Digital Holography , 2004 .

[23]  Myung K. Kim,et al.  Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. , 2005, Optics letters.

[24]  Mit Press,et al.  A Linear Filtering Approach to the Computation of the Discrete Fourier Transform , 1969 .

[25]  A Finizio,et al.  Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. , 2005, Optics express.

[26]  John J. Soraghan,et al.  Use of Fresnelets for Phase-Shifting Digital Hologram Compression , 2006, IEEE Transactions on Image Processing.

[27]  Ichirou Yamaguchi,et al.  Image reconstruction only by phase data in phase-shifting digital holography. , 2006, Applied optics.

[28]  Zu-jie Peng,et al.  Spatial bandwidth extended reconstruction for digital color Fresnel holograms. , 2009, Optics express.

[29]  Thierry Blu,et al.  Fresnelets: new multiresolution wavelet bases for digital holography , 2003, IEEE Trans. Image Process..

[30]  P. Marquet,et al.  Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. , 2006, Optics express.

[31]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[32]  Dan Borza Mechanical vibration measurement by high-resolution time-averaged digital holography , 2005 .

[33]  Levent Onural,et al.  Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis , 1992 .

[34]  Pascal Picart,et al.  Digital holographic reconstruction of a local object field using an adjustable magnification. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  David S. Monaghan,et al.  Zooming algorithms for Digital Holography , 2010 .

[36]  P. Picart,et al.  Some opportunities for vibration analysis with time averaging in digital Fresnel holography. , 2005, Applied optics.

[37]  Yasuyuki Ichihashi,et al.  Real-time digital holographic microscopy observable in multi-view and multi-resolution , 2010 .

[38]  J. Goodman Introduction to Fourier optics , 1969 .

[39]  C. Aleksoff,et al.  Temporally modulated holography. , 1971, Applied Optics.

[40]  L. Onural,et al.  Sampling of the diffraction field. , 2000, Applied optics.

[41]  I. Yamaguchi,et al.  Phase-shifting digital holography. , 1997, Optics letters.

[42]  S. Coëtmellec,et al.  Particle field digital holographic reconstruction in arbitrary tilted planes. , 2003, Optics express.

[43]  Julio Soria,et al.  Use of holography in particle image velocimetry measurements of a swirling flow , 1999 .

[44]  I. Yamaguchi,et al.  Image formation in phase-shifting digital holography and applications to microscopy. , 2001, Applied optics.

[45]  M. Unser,et al.  Complex-wave retrieval from a single off-axis hologram. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  Pascal Picart,et al.  Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. , 2009, Optics letters.

[47]  Domenico Alfieri,et al.  Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. , 2004, Optics letters.

[48]  Emmanouil Darakis,et al.  Compression defects in different reconstructions from phase-shifting digital holographic data. , 2007, Applied optics.

[49]  A. Asundi,et al.  Time-averaged in-line digital holographic interferometry for vibration analysis. , 2006, Applied optics.

[50]  S. Coëtmellec,et al.  Micropipe flow visualization using digital in-line holographic microscopy. , 2010, Optics express.

[51]  Leonid Yaroslavsky and Jaakko Astola Digital Recording and Numerical Reconstruction of Holograms , 2009 .

[52]  M. Atlan,et al.  Imaging a vibrating object by Sideband Digital Holography. , 2008, Optics express.

[53]  Marc Brunel,et al.  Digital in-line holography in thick optical systems: application to visualization in pipes. , 2008, Applied optics.

[54]  P. Scott,et al.  Phase retrieval and twin-image elimination for in-line Fresnel holograms , 1987 .

[55]  T.J. Naughton,et al.  Using Commodity Graphics Hardware for Real-Time Digital Hologram View-Reconstruction , 2009, Journal of Display Technology.

[56]  Pascal Picart,et al.  Full-field vibrometry with digital Fresnel holography. , 2005, Applied optics.

[57]  Etienne Cuche,et al.  Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  M. Atlan,et al.  Accurate phase-shifting digital interferometry. , 2007, Optics letters.

[59]  L. P. I︠A︡roslavskiĭ,et al.  Methods of Digital Holography , 1980 .

[60]  M. Atlan,et al.  Laser Doppler imaging, revisited , 2006 .

[61]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[62]  Marc Brunel,et al.  Determination of 3D-region of interest using digital in-line holography with astigmatic Gaussian beams , 2009 .

[63]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[64]  Ichirou Yamaguchi,et al.  Algorithm for reconstruction of digital holograms with adjustable magnification. , 2004, Optics letters.

[65]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[66]  E. Cuche,et al.  Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. , 2000, Applied optics.

[67]  Ferréol Soulez,et al.  Inverse problem approach in particle digital holography: out-of-field particle detection made possible. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[68]  M Simonutti,et al.  Holographic laser Doppler ophthalmoscopy. , 2010, Optics letters.

[69]  Marc Brunel,et al.  Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[71]  M. K. Kim,et al.  Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography. , 2000, Optics express.

[72]  Pascal Picart,et al.  Digital three-color holographic interferometry for flow analysis. , 2008, Optics express.

[73]  Umberto Iemma,et al.  Digital holography and Karhunen–Loève decomposition for the modal analysis of two-dimensional vibrating structures , 2006 .

[74]  Levent Onural,et al.  DIGITAL DECODING OF IN-LINE HOLOGRAMS , 1987 .

[75]  D. Gabor A New Microscopic Principle , 1948, Nature.